Cracking and Microstructure Transition of Iron Ore Containing Goethite in Fe-C Melt Based on the HIsmelt Process
The phenomenon of cracking and deterioration of iron ore particles is a widespread scientific problem in the field of mineral processing and metallurgy. In this paper, the thermal decomposition properties of iron ore were investigated by a non-isothermal method using thermogravimetric equipment, and...
Gespeichert in:
Veröffentlicht in: | Minerals (Basel) 2023-03, Vol.13 (3), p.448 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 448 |
container_title | Minerals (Basel) |
container_volume | 13 |
creator | Wang, Guilin Zhang, Jianliang Liu, Zhengjian Tan, Yubo Wang, Yaozu |
description | The phenomenon of cracking and deterioration of iron ore particles is a widespread scientific problem in the field of mineral processing and metallurgy. In this paper, the thermal decomposition properties of iron ore were investigated by a non-isothermal method using thermogravimetric equipment, and the crack evolution behavior of iron ore within Fe-C melt was investigated experimentally, by scanning electron microscopy and Micro-CT. The results show that the start decomposition temperature of #2 iron ore is 292.7 °C, which is 37.3 °C higher compared to that of #1 iron ore, because of its smaller pores and the difficulty of water vapor diffusion. The initial decomposition of iron ore is the decomposition goethite to form water vapor, and as heat transfer continues, hematite particles break into smaller particles and decompose to form Fe3O4. During the smelting reduction process, the Crack index (CI) of #1 iron ore was 5.50% at 4 s, and the CI index increased to 23.54% when time was extended to 16 s, and the internal evolved from locally interconnected holes to cracked structure. The iron ore maintains a relatively intact form during reduction within the Fe-C melt, and interfacial reduction reaction is dominant in the later stage. |
doi_str_mv | 10.3390/min13030448 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2791676829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A750412114</galeid><sourcerecordid>A750412114</sourcerecordid><originalsourceid>FETCH-LOGICAL-a360t-70dbd5fff07b3edd44a291f220ef43fede5bf00401230f564bb681561f7e0d3d3</originalsourceid><addsrcrecordid>eNpNUU1PAjEQ3RhNJMrJP9DEo1mdfuwue8SNAgkED5h423S3UyhCi205-O8twQMzh5m8vDeTvJdlDxSeOa_hZW8s5cBBiNFVNmBQFTkt-df1xX6bDUPYQqqa8lHBBtmh8bL_NnZNpFVkYXrvQvTHPh49kpWXNphonCVOk5lPc5ngxtkojT2JJg7jxkQkxpJ3zBuywF0krzKgIokdN0ims7A_gR_e9RjCfXaj5S7g8H_eZZ_vb6tmms-Xk1kznueSlxDzClSnCq01VB1HpYSQrKaaMUAtuEaFRacBBFDGQRel6LpyRIuS6gpBccXvssfz3YN3P0cMsd26o7fpZcuqmpZVOWJ1Yj2fWWu5w9ZY7WLyI7XCvemdRW0SPq4KEJRRKpLg6Sw4GRU86vbgzV7635ZCe4qhvYiB_wH8-3o4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791676829</pqid></control><display><type>article</type><title>Cracking and Microstructure Transition of Iron Ore Containing Goethite in Fe-C Melt Based on the HIsmelt Process</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Wang, Guilin ; Zhang, Jianliang ; Liu, Zhengjian ; Tan, Yubo ; Wang, Yaozu</creator><creatorcontrib>Wang, Guilin ; Zhang, Jianliang ; Liu, Zhengjian ; Tan, Yubo ; Wang, Yaozu</creatorcontrib><description>The phenomenon of cracking and deterioration of iron ore particles is a widespread scientific problem in the field of mineral processing and metallurgy. In this paper, the thermal decomposition properties of iron ore were investigated by a non-isothermal method using thermogravimetric equipment, and the crack evolution behavior of iron ore within Fe-C melt was investigated experimentally, by scanning electron microscopy and Micro-CT. The results show that the start decomposition temperature of #2 iron ore is 292.7 °C, which is 37.3 °C higher compared to that of #1 iron ore, because of its smaller pores and the difficulty of water vapor diffusion. The initial decomposition of iron ore is the decomposition goethite to form water vapor, and as heat transfer continues, hematite particles break into smaller particles and decompose to form Fe3O4. During the smelting reduction process, the Crack index (CI) of #1 iron ore was 5.50% at 4 s, and the CI index increased to 23.54% when time was extended to 16 s, and the internal evolved from locally interconnected holes to cracked structure. The iron ore maintains a relatively intact form during reduction within the Fe-C melt, and interfacial reduction reaction is dominant in the later stage.</description><identifier>ISSN: 2075-163X</identifier><identifier>EISSN: 2075-163X</identifier><identifier>DOI: 10.3390/min13030448</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Chemical reduction ; Composition ; Computed tomography ; Decomposition ; Electron microscopy ; Environmental aspects ; Evolution ; Experiments ; Goethite ; Haematite ; Heat ; Heat transfer ; Hematite ; High temperature ; Iron compounds ; Iron ores ; Iron oxides ; Mechanical properties ; Metallurgy ; Microstructure ; Mineral processing ; Scanning electron microscopy ; Smelting reduction ; Structure ; Thermal decomposition ; Thermal degradation ; Water vapor ; Water vapour</subject><ispartof>Minerals (Basel), 2023-03, Vol.13 (3), p.448</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a360t-70dbd5fff07b3edd44a291f220ef43fede5bf00401230f564bb681561f7e0d3d3</citedby><cites>FETCH-LOGICAL-a360t-70dbd5fff07b3edd44a291f220ef43fede5bf00401230f564bb681561f7e0d3d3</cites><orcidid>0000-0002-0830-6691</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, Guilin</creatorcontrib><creatorcontrib>Zhang, Jianliang</creatorcontrib><creatorcontrib>Liu, Zhengjian</creatorcontrib><creatorcontrib>Tan, Yubo</creatorcontrib><creatorcontrib>Wang, Yaozu</creatorcontrib><title>Cracking and Microstructure Transition of Iron Ore Containing Goethite in Fe-C Melt Based on the HIsmelt Process</title><title>Minerals (Basel)</title><description>The phenomenon of cracking and deterioration of iron ore particles is a widespread scientific problem in the field of mineral processing and metallurgy. In this paper, the thermal decomposition properties of iron ore were investigated by a non-isothermal method using thermogravimetric equipment, and the crack evolution behavior of iron ore within Fe-C melt was investigated experimentally, by scanning electron microscopy and Micro-CT. The results show that the start decomposition temperature of #2 iron ore is 292.7 °C, which is 37.3 °C higher compared to that of #1 iron ore, because of its smaller pores and the difficulty of water vapor diffusion. The initial decomposition of iron ore is the decomposition goethite to form water vapor, and as heat transfer continues, hematite particles break into smaller particles and decompose to form Fe3O4. During the smelting reduction process, the Crack index (CI) of #1 iron ore was 5.50% at 4 s, and the CI index increased to 23.54% when time was extended to 16 s, and the internal evolved from locally interconnected holes to cracked structure. The iron ore maintains a relatively intact form during reduction within the Fe-C melt, and interfacial reduction reaction is dominant in the later stage.</description><subject>Chemical reduction</subject><subject>Composition</subject><subject>Computed tomography</subject><subject>Decomposition</subject><subject>Electron microscopy</subject><subject>Environmental aspects</subject><subject>Evolution</subject><subject>Experiments</subject><subject>Goethite</subject><subject>Haematite</subject><subject>Heat</subject><subject>Heat transfer</subject><subject>Hematite</subject><subject>High temperature</subject><subject>Iron compounds</subject><subject>Iron ores</subject><subject>Iron oxides</subject><subject>Mechanical properties</subject><subject>Metallurgy</subject><subject>Microstructure</subject><subject>Mineral processing</subject><subject>Scanning electron microscopy</subject><subject>Smelting reduction</subject><subject>Structure</subject><subject>Thermal decomposition</subject><subject>Thermal degradation</subject><subject>Water vapor</subject><subject>Water vapour</subject><issn>2075-163X</issn><issn>2075-163X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNUU1PAjEQ3RhNJMrJP9DEo1mdfuwue8SNAgkED5h423S3UyhCi205-O8twQMzh5m8vDeTvJdlDxSeOa_hZW8s5cBBiNFVNmBQFTkt-df1xX6bDUPYQqqa8lHBBtmh8bL_NnZNpFVkYXrvQvTHPh49kpWXNphonCVOk5lPc5ngxtkojT2JJg7jxkQkxpJ3zBuywF0krzKgIokdN0ims7A_gR_e9RjCfXaj5S7g8H_eZZ_vb6tmms-Xk1kznueSlxDzClSnCq01VB1HpYSQrKaaMUAtuEaFRacBBFDGQRel6LpyRIuS6gpBccXvssfz3YN3P0cMsd26o7fpZcuqmpZVOWJ1Yj2fWWu5w9ZY7WLyI7XCvemdRW0SPq4KEJRRKpLg6Sw4GRU86vbgzV7635ZCe4qhvYiB_wH8-3o4</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Wang, Guilin</creator><creator>Zhang, Jianliang</creator><creator>Liu, Zhengjian</creator><creator>Tan, Yubo</creator><creator>Wang, Yaozu</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>M0C</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0830-6691</orcidid></search><sort><creationdate>20230301</creationdate><title>Cracking and Microstructure Transition of Iron Ore Containing Goethite in Fe-C Melt Based on the HIsmelt Process</title><author>Wang, Guilin ; Zhang, Jianliang ; Liu, Zhengjian ; Tan, Yubo ; Wang, Yaozu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a360t-70dbd5fff07b3edd44a291f220ef43fede5bf00401230f564bb681561f7e0d3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemical reduction</topic><topic>Composition</topic><topic>Computed tomography</topic><topic>Decomposition</topic><topic>Electron microscopy</topic><topic>Environmental aspects</topic><topic>Evolution</topic><topic>Experiments</topic><topic>Goethite</topic><topic>Haematite</topic><topic>Heat</topic><topic>Heat transfer</topic><topic>Hematite</topic><topic>High temperature</topic><topic>Iron compounds</topic><topic>Iron ores</topic><topic>Iron oxides</topic><topic>Mechanical properties</topic><topic>Metallurgy</topic><topic>Microstructure</topic><topic>Mineral processing</topic><topic>Scanning electron microscopy</topic><topic>Smelting reduction</topic><topic>Structure</topic><topic>Thermal decomposition</topic><topic>Thermal degradation</topic><topic>Water vapor</topic><topic>Water vapour</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Guilin</creatorcontrib><creatorcontrib>Zhang, Jianliang</creatorcontrib><creatorcontrib>Liu, Zhengjian</creatorcontrib><creatorcontrib>Tan, Yubo</creatorcontrib><creatorcontrib>Wang, Yaozu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ABI/INFORM Global</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Minerals (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Guilin</au><au>Zhang, Jianliang</au><au>Liu, Zhengjian</au><au>Tan, Yubo</au><au>Wang, Yaozu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cracking and Microstructure Transition of Iron Ore Containing Goethite in Fe-C Melt Based on the HIsmelt Process</atitle><jtitle>Minerals (Basel)</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>13</volume><issue>3</issue><spage>448</spage><pages>448-</pages><issn>2075-163X</issn><eissn>2075-163X</eissn><abstract>The phenomenon of cracking and deterioration of iron ore particles is a widespread scientific problem in the field of mineral processing and metallurgy. In this paper, the thermal decomposition properties of iron ore were investigated by a non-isothermal method using thermogravimetric equipment, and the crack evolution behavior of iron ore within Fe-C melt was investigated experimentally, by scanning electron microscopy and Micro-CT. The results show that the start decomposition temperature of #2 iron ore is 292.7 °C, which is 37.3 °C higher compared to that of #1 iron ore, because of its smaller pores and the difficulty of water vapor diffusion. The initial decomposition of iron ore is the decomposition goethite to form water vapor, and as heat transfer continues, hematite particles break into smaller particles and decompose to form Fe3O4. During the smelting reduction process, the Crack index (CI) of #1 iron ore was 5.50% at 4 s, and the CI index increased to 23.54% when time was extended to 16 s, and the internal evolved from locally interconnected holes to cracked structure. The iron ore maintains a relatively intact form during reduction within the Fe-C melt, and interfacial reduction reaction is dominant in the later stage.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/min13030448</doi><orcidid>https://orcid.org/0000-0002-0830-6691</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-163X |
ispartof | Minerals (Basel), 2023-03, Vol.13 (3), p.448 |
issn | 2075-163X 2075-163X |
language | eng |
recordid | cdi_proquest_journals_2791676829 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Chemical reduction Composition Computed tomography Decomposition Electron microscopy Environmental aspects Evolution Experiments Goethite Haematite Heat Heat transfer Hematite High temperature Iron compounds Iron ores Iron oxides Mechanical properties Metallurgy Microstructure Mineral processing Scanning electron microscopy Smelting reduction Structure Thermal decomposition Thermal degradation Water vapor Water vapour |
title | Cracking and Microstructure Transition of Iron Ore Containing Goethite in Fe-C Melt Based on the HIsmelt Process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A44%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cracking%20and%20Microstructure%20Transition%20of%20Iron%20Ore%20Containing%20Goethite%20in%20Fe-C%20Melt%20Based%20on%20the%20HIsmelt%20Process&rft.jtitle=Minerals%20(Basel)&rft.au=Wang,%20Guilin&rft.date=2023-03-01&rft.volume=13&rft.issue=3&rft.spage=448&rft.pages=448-&rft.issn=2075-163X&rft.eissn=2075-163X&rft_id=info:doi/10.3390/min13030448&rft_dat=%3Cgale_proqu%3EA750412114%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2791676829&rft_id=info:pmid/&rft_galeid=A750412114&rfr_iscdi=true |