Modeling and Prediction of Sustainable Urban Mobility Using Game Theory Multiagent and the Golden Template Algorithm

The current development of multimodal transport networks focuses on the realization of intelligent transport systems (ITS) to manage the prediction of traffic congestion and urban mobility of vehicles and passengers so that alternative routes can be recommended for transport, especially the use of p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2023-03, Vol.12 (6), p.1288
Hauptverfasser: Radu, Valentin, Dumitrescu, Catalin, Vasile, Emilia, Tăbîrcă, Alina Iuliana, Stefan, Maria Cristina, Manea, Liliana, Radu, Florin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 1288
container_title Electronics (Basel)
container_volume 12
creator Radu, Valentin
Dumitrescu, Catalin
Vasile, Emilia
Tăbîrcă, Alina Iuliana
Stefan, Maria Cristina
Manea, Liliana
Radu, Florin
description The current development of multimodal transport networks focuses on the realization of intelligent transport systems (ITS) to manage the prediction of traffic congestion and urban mobility of vehicles and passengers so that alternative routes can be recommended for transport, especially the use of public passenger transport, to achieve sustainable transport. In the article, we propose an algorithm and a methodology for solving multidimensional traffic congestion objectives, especially for intersections, based on combining machine learning with the templates method—the golden template algorithm with the multiagent game theory. Intersections are modeled as independent players who had to reach an agreement using Nash negotiation. The obtained results showed that the Nash negotiation with multiagents and the golden template modeling have superior results to the model predictive control (MPC) algorithm, improving travel time, the length of traffic queues, the efficiency of travel flows in an unknown and dynamic environment, and the coordination of the agents’ actions and decision making. The proposed algorithm can be used in planning public passenger transport on alternative routes and in ITS management decision making.
doi_str_mv 10.3390/electronics12061288
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2791639856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743763439</galeid><sourcerecordid>A743763439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-f9f1fe0f2c9b87e9a532f89edfa5f19d7463b9332958f62c1d1ceceb7702dd9b3</originalsourceid><addsrcrecordid>eNptkT1PwzAQhiMEEhX0F7BYYk7xR_PhsaqgILUCiXaOHPucunLsYjtD_z0pZWDgbrjT6X3eG94seyB4xhjHT2BBpuCdkZFQXBJa11fZhOKK55xyev1nv82mMR7wWJywmuFJljZegTWuQ8Ip9BFAGZmMd8hr9DnEJIwTrQW0C61waONbY006oV08IyvRA9ruwYcT2gw2GdGBSz9OaQ9o5a0Ch7bQH61IgBa288GkfX-f3WhhI0x_5122e3neLl_z9fvqbblY55KVJOWaa6IBayp5W1fARcGorjkoLQpNuKrmJWs5Y5QXtS6pJIpIkNBWFaZK8ZbdZY8X32PwXwPE1Bz8ENz4sqEVJyXjdVGOqtlF1QkLjXHapyDk2Ap6I70Dbcb7opqzqmRzxkeAXQAZfIwBdHMMphfh1BDcnCNp_omEfQOZKoOj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791639856</pqid></control><display><type>article</type><title>Modeling and Prediction of Sustainable Urban Mobility Using Game Theory Multiagent and the Golden Template Algorithm</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB Electronic Journals Library</source><creator>Radu, Valentin ; Dumitrescu, Catalin ; Vasile, Emilia ; Tăbîrcă, Alina Iuliana ; Stefan, Maria Cristina ; Manea, Liliana ; Radu, Florin</creator><creatorcontrib>Radu, Valentin ; Dumitrescu, Catalin ; Vasile, Emilia ; Tăbîrcă, Alina Iuliana ; Stefan, Maria Cristina ; Manea, Liliana ; Radu, Florin</creatorcontrib><description>The current development of multimodal transport networks focuses on the realization of intelligent transport systems (ITS) to manage the prediction of traffic congestion and urban mobility of vehicles and passengers so that alternative routes can be recommended for transport, especially the use of public passenger transport, to achieve sustainable transport. In the article, we propose an algorithm and a methodology for solving multidimensional traffic congestion objectives, especially for intersections, based on combining machine learning with the templates method—the golden template algorithm with the multiagent game theory. Intersections are modeled as independent players who had to reach an agreement using Nash negotiation. The obtained results showed that the Nash negotiation with multiagents and the golden template modeling have superior results to the model predictive control (MPC) algorithm, improving travel time, the length of traffic queues, the efficiency of travel flows in an unknown and dynamic environment, and the coordination of the agents’ actions and decision making. The proposed algorithm can be used in planning public passenger transport on alternative routes and in ITS management decision making.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics12061288</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Analysis ; Big Data ; Decision making ; Decision support systems ; Decision theory ; Design ; Game theory ; Generators ; Intelligent transportation systems ; Intelligent vehicle-highway systems ; Machine learning ; Modelling ; Multiagent systems ; Multimodal transportation systems ; Negotiations ; Neural networks ; Passengers ; Predictive control ; Software ; Sustainable urban development ; Traffic ; Traffic congestion ; Traffic engineering ; Traffic intersections ; Transportation networks ; Travel time ; Urban transportation</subject><ispartof>Electronics (Basel), 2023-03, Vol.12 (6), p.1288</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-f9f1fe0f2c9b87e9a532f89edfa5f19d7463b9332958f62c1d1ceceb7702dd9b3</citedby><cites>FETCH-LOGICAL-c361t-f9f1fe0f2c9b87e9a532f89edfa5f19d7463b9332958f62c1d1ceceb7702dd9b3</cites><orcidid>0000-0002-3882-5062 ; 0000-0003-2153-4100 ; 0000-0003-3407-8052 ; 0000-0003-3166-3192</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Radu, Valentin</creatorcontrib><creatorcontrib>Dumitrescu, Catalin</creatorcontrib><creatorcontrib>Vasile, Emilia</creatorcontrib><creatorcontrib>Tăbîrcă, Alina Iuliana</creatorcontrib><creatorcontrib>Stefan, Maria Cristina</creatorcontrib><creatorcontrib>Manea, Liliana</creatorcontrib><creatorcontrib>Radu, Florin</creatorcontrib><title>Modeling and Prediction of Sustainable Urban Mobility Using Game Theory Multiagent and the Golden Template Algorithm</title><title>Electronics (Basel)</title><description>The current development of multimodal transport networks focuses on the realization of intelligent transport systems (ITS) to manage the prediction of traffic congestion and urban mobility of vehicles and passengers so that alternative routes can be recommended for transport, especially the use of public passenger transport, to achieve sustainable transport. In the article, we propose an algorithm and a methodology for solving multidimensional traffic congestion objectives, especially for intersections, based on combining machine learning with the templates method—the golden template algorithm with the multiagent game theory. Intersections are modeled as independent players who had to reach an agreement using Nash negotiation. The obtained results showed that the Nash negotiation with multiagents and the golden template modeling have superior results to the model predictive control (MPC) algorithm, improving travel time, the length of traffic queues, the efficiency of travel flows in an unknown and dynamic environment, and the coordination of the agents’ actions and decision making. The proposed algorithm can be used in planning public passenger transport on alternative routes and in ITS management decision making.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Big Data</subject><subject>Decision making</subject><subject>Decision support systems</subject><subject>Decision theory</subject><subject>Design</subject><subject>Game theory</subject><subject>Generators</subject><subject>Intelligent transportation systems</subject><subject>Intelligent vehicle-highway systems</subject><subject>Machine learning</subject><subject>Modelling</subject><subject>Multiagent systems</subject><subject>Multimodal transportation systems</subject><subject>Negotiations</subject><subject>Neural networks</subject><subject>Passengers</subject><subject>Predictive control</subject><subject>Software</subject><subject>Sustainable urban development</subject><subject>Traffic</subject><subject>Traffic congestion</subject><subject>Traffic engineering</subject><subject>Traffic intersections</subject><subject>Transportation networks</subject><subject>Travel time</subject><subject>Urban transportation</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkT1PwzAQhiMEEhX0F7BYYk7xR_PhsaqgILUCiXaOHPucunLsYjtD_z0pZWDgbrjT6X3eG94seyB4xhjHT2BBpuCdkZFQXBJa11fZhOKK55xyev1nv82mMR7wWJywmuFJljZegTWuQ8Ip9BFAGZmMd8hr9DnEJIwTrQW0C61waONbY006oV08IyvRA9ruwYcT2gw2GdGBSz9OaQ9o5a0Ch7bQH61IgBa288GkfX-f3WhhI0x_5122e3neLl_z9fvqbblY55KVJOWaa6IBayp5W1fARcGorjkoLQpNuKrmJWs5Y5QXtS6pJIpIkNBWFaZK8ZbdZY8X32PwXwPE1Bz8ENz4sqEVJyXjdVGOqtlF1QkLjXHapyDk2Ap6I70Dbcb7opqzqmRzxkeAXQAZfIwBdHMMphfh1BDcnCNp_omEfQOZKoOj</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Radu, Valentin</creator><creator>Dumitrescu, Catalin</creator><creator>Vasile, Emilia</creator><creator>Tăbîrcă, Alina Iuliana</creator><creator>Stefan, Maria Cristina</creator><creator>Manea, Liliana</creator><creator>Radu, Florin</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-3882-5062</orcidid><orcidid>https://orcid.org/0000-0003-2153-4100</orcidid><orcidid>https://orcid.org/0000-0003-3407-8052</orcidid><orcidid>https://orcid.org/0000-0003-3166-3192</orcidid></search><sort><creationdate>20230301</creationdate><title>Modeling and Prediction of Sustainable Urban Mobility Using Game Theory Multiagent and the Golden Template Algorithm</title><author>Radu, Valentin ; Dumitrescu, Catalin ; Vasile, Emilia ; Tăbîrcă, Alina Iuliana ; Stefan, Maria Cristina ; Manea, Liliana ; Radu, Florin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-f9f1fe0f2c9b87e9a532f89edfa5f19d7463b9332958f62c1d1ceceb7702dd9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Big Data</topic><topic>Decision making</topic><topic>Decision support systems</topic><topic>Decision theory</topic><topic>Design</topic><topic>Game theory</topic><topic>Generators</topic><topic>Intelligent transportation systems</topic><topic>Intelligent vehicle-highway systems</topic><topic>Machine learning</topic><topic>Modelling</topic><topic>Multiagent systems</topic><topic>Multimodal transportation systems</topic><topic>Negotiations</topic><topic>Neural networks</topic><topic>Passengers</topic><topic>Predictive control</topic><topic>Software</topic><topic>Sustainable urban development</topic><topic>Traffic</topic><topic>Traffic congestion</topic><topic>Traffic engineering</topic><topic>Traffic intersections</topic><topic>Transportation networks</topic><topic>Travel time</topic><topic>Urban transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Radu, Valentin</creatorcontrib><creatorcontrib>Dumitrescu, Catalin</creatorcontrib><creatorcontrib>Vasile, Emilia</creatorcontrib><creatorcontrib>Tăbîrcă, Alina Iuliana</creatorcontrib><creatorcontrib>Stefan, Maria Cristina</creatorcontrib><creatorcontrib>Manea, Liliana</creatorcontrib><creatorcontrib>Radu, Florin</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Radu, Valentin</au><au>Dumitrescu, Catalin</au><au>Vasile, Emilia</au><au>Tăbîrcă, Alina Iuliana</au><au>Stefan, Maria Cristina</au><au>Manea, Liliana</au><au>Radu, Florin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and Prediction of Sustainable Urban Mobility Using Game Theory Multiagent and the Golden Template Algorithm</atitle><jtitle>Electronics (Basel)</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>12</volume><issue>6</issue><spage>1288</spage><pages>1288-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>The current development of multimodal transport networks focuses on the realization of intelligent transport systems (ITS) to manage the prediction of traffic congestion and urban mobility of vehicles and passengers so that alternative routes can be recommended for transport, especially the use of public passenger transport, to achieve sustainable transport. In the article, we propose an algorithm and a methodology for solving multidimensional traffic congestion objectives, especially for intersections, based on combining machine learning with the templates method—the golden template algorithm with the multiagent game theory. Intersections are modeled as independent players who had to reach an agreement using Nash negotiation. The obtained results showed that the Nash negotiation with multiagents and the golden template modeling have superior results to the model predictive control (MPC) algorithm, improving travel time, the length of traffic queues, the efficiency of travel flows in an unknown and dynamic environment, and the coordination of the agents’ actions and decision making. The proposed algorithm can be used in planning public passenger transport on alternative routes and in ITS management decision making.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics12061288</doi><orcidid>https://orcid.org/0000-0002-3882-5062</orcidid><orcidid>https://orcid.org/0000-0003-2153-4100</orcidid><orcidid>https://orcid.org/0000-0003-3407-8052</orcidid><orcidid>https://orcid.org/0000-0003-3166-3192</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2023-03, Vol.12 (6), p.1288
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2791639856
source MDPI - Multidisciplinary Digital Publishing Institute; EZB Electronic Journals Library
subjects Algorithms
Analysis
Big Data
Decision making
Decision support systems
Decision theory
Design
Game theory
Generators
Intelligent transportation systems
Intelligent vehicle-highway systems
Machine learning
Modelling
Multiagent systems
Multimodal transportation systems
Negotiations
Neural networks
Passengers
Predictive control
Software
Sustainable urban development
Traffic
Traffic congestion
Traffic engineering
Traffic intersections
Transportation networks
Travel time
Urban transportation
title Modeling and Prediction of Sustainable Urban Mobility Using Game Theory Multiagent and the Golden Template Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T17%3A22%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20Prediction%20of%20Sustainable%20Urban%20Mobility%20Using%20Game%20Theory%20Multiagent%20and%20the%20Golden%20Template%20Algorithm&rft.jtitle=Electronics%20(Basel)&rft.au=Radu,%20Valentin&rft.date=2023-03-01&rft.volume=12&rft.issue=6&rft.spage=1288&rft.pages=1288-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics12061288&rft_dat=%3Cgale_proqu%3EA743763439%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2791639856&rft_id=info:pmid/&rft_galeid=A743763439&rfr_iscdi=true