Modeling and Prediction of Sustainable Urban Mobility Using Game Theory Multiagent and the Golden Template Algorithm
The current development of multimodal transport networks focuses on the realization of intelligent transport systems (ITS) to manage the prediction of traffic congestion and urban mobility of vehicles and passengers so that alternative routes can be recommended for transport, especially the use of p...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2023-03, Vol.12 (6), p.1288 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 1288 |
container_title | Electronics (Basel) |
container_volume | 12 |
creator | Radu, Valentin Dumitrescu, Catalin Vasile, Emilia Tăbîrcă, Alina Iuliana Stefan, Maria Cristina Manea, Liliana Radu, Florin |
description | The current development of multimodal transport networks focuses on the realization of intelligent transport systems (ITS) to manage the prediction of traffic congestion and urban mobility of vehicles and passengers so that alternative routes can be recommended for transport, especially the use of public passenger transport, to achieve sustainable transport. In the article, we propose an algorithm and a methodology for solving multidimensional traffic congestion objectives, especially for intersections, based on combining machine learning with the templates method—the golden template algorithm with the multiagent game theory. Intersections are modeled as independent players who had to reach an agreement using Nash negotiation. The obtained results showed that the Nash negotiation with multiagents and the golden template modeling have superior results to the model predictive control (MPC) algorithm, improving travel time, the length of traffic queues, the efficiency of travel flows in an unknown and dynamic environment, and the coordination of the agents’ actions and decision making. The proposed algorithm can be used in planning public passenger transport on alternative routes and in ITS management decision making. |
doi_str_mv | 10.3390/electronics12061288 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2791639856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743763439</galeid><sourcerecordid>A743763439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-f9f1fe0f2c9b87e9a532f89edfa5f19d7463b9332958f62c1d1ceceb7702dd9b3</originalsourceid><addsrcrecordid>eNptkT1PwzAQhiMEEhX0F7BYYk7xR_PhsaqgILUCiXaOHPucunLsYjtD_z0pZWDgbrjT6X3eG94seyB4xhjHT2BBpuCdkZFQXBJa11fZhOKK55xyev1nv82mMR7wWJywmuFJljZegTWuQ8Ip9BFAGZmMd8hr9DnEJIwTrQW0C61waONbY006oV08IyvRA9ruwYcT2gw2GdGBSz9OaQ9o5a0Ch7bQH61IgBa288GkfX-f3WhhI0x_5122e3neLl_z9fvqbblY55KVJOWaa6IBayp5W1fARcGorjkoLQpNuKrmJWs5Y5QXtS6pJIpIkNBWFaZK8ZbdZY8X32PwXwPE1Bz8ENz4sqEVJyXjdVGOqtlF1QkLjXHapyDk2Ap6I70Dbcb7opqzqmRzxkeAXQAZfIwBdHMMphfh1BDcnCNp_omEfQOZKoOj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791639856</pqid></control><display><type>article</type><title>Modeling and Prediction of Sustainable Urban Mobility Using Game Theory Multiagent and the Golden Template Algorithm</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB Electronic Journals Library</source><creator>Radu, Valentin ; Dumitrescu, Catalin ; Vasile, Emilia ; Tăbîrcă, Alina Iuliana ; Stefan, Maria Cristina ; Manea, Liliana ; Radu, Florin</creator><creatorcontrib>Radu, Valentin ; Dumitrescu, Catalin ; Vasile, Emilia ; Tăbîrcă, Alina Iuliana ; Stefan, Maria Cristina ; Manea, Liliana ; Radu, Florin</creatorcontrib><description>The current development of multimodal transport networks focuses on the realization of intelligent transport systems (ITS) to manage the prediction of traffic congestion and urban mobility of vehicles and passengers so that alternative routes can be recommended for transport, especially the use of public passenger transport, to achieve sustainable transport. In the article, we propose an algorithm and a methodology for solving multidimensional traffic congestion objectives, especially for intersections, based on combining machine learning with the templates method—the golden template algorithm with the multiagent game theory. Intersections are modeled as independent players who had to reach an agreement using Nash negotiation. The obtained results showed that the Nash negotiation with multiagents and the golden template modeling have superior results to the model predictive control (MPC) algorithm, improving travel time, the length of traffic queues, the efficiency of travel flows in an unknown and dynamic environment, and the coordination of the agents’ actions and decision making. The proposed algorithm can be used in planning public passenger transport on alternative routes and in ITS management decision making.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics12061288</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Analysis ; Big Data ; Decision making ; Decision support systems ; Decision theory ; Design ; Game theory ; Generators ; Intelligent transportation systems ; Intelligent vehicle-highway systems ; Machine learning ; Modelling ; Multiagent systems ; Multimodal transportation systems ; Negotiations ; Neural networks ; Passengers ; Predictive control ; Software ; Sustainable urban development ; Traffic ; Traffic congestion ; Traffic engineering ; Traffic intersections ; Transportation networks ; Travel time ; Urban transportation</subject><ispartof>Electronics (Basel), 2023-03, Vol.12 (6), p.1288</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-f9f1fe0f2c9b87e9a532f89edfa5f19d7463b9332958f62c1d1ceceb7702dd9b3</citedby><cites>FETCH-LOGICAL-c361t-f9f1fe0f2c9b87e9a532f89edfa5f19d7463b9332958f62c1d1ceceb7702dd9b3</cites><orcidid>0000-0002-3882-5062 ; 0000-0003-2153-4100 ; 0000-0003-3407-8052 ; 0000-0003-3166-3192</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Radu, Valentin</creatorcontrib><creatorcontrib>Dumitrescu, Catalin</creatorcontrib><creatorcontrib>Vasile, Emilia</creatorcontrib><creatorcontrib>Tăbîrcă, Alina Iuliana</creatorcontrib><creatorcontrib>Stefan, Maria Cristina</creatorcontrib><creatorcontrib>Manea, Liliana</creatorcontrib><creatorcontrib>Radu, Florin</creatorcontrib><title>Modeling and Prediction of Sustainable Urban Mobility Using Game Theory Multiagent and the Golden Template Algorithm</title><title>Electronics (Basel)</title><description>The current development of multimodal transport networks focuses on the realization of intelligent transport systems (ITS) to manage the prediction of traffic congestion and urban mobility of vehicles and passengers so that alternative routes can be recommended for transport, especially the use of public passenger transport, to achieve sustainable transport. In the article, we propose an algorithm and a methodology for solving multidimensional traffic congestion objectives, especially for intersections, based on combining machine learning with the templates method—the golden template algorithm with the multiagent game theory. Intersections are modeled as independent players who had to reach an agreement using Nash negotiation. The obtained results showed that the Nash negotiation with multiagents and the golden template modeling have superior results to the model predictive control (MPC) algorithm, improving travel time, the length of traffic queues, the efficiency of travel flows in an unknown and dynamic environment, and the coordination of the agents’ actions and decision making. The proposed algorithm can be used in planning public passenger transport on alternative routes and in ITS management decision making.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Big Data</subject><subject>Decision making</subject><subject>Decision support systems</subject><subject>Decision theory</subject><subject>Design</subject><subject>Game theory</subject><subject>Generators</subject><subject>Intelligent transportation systems</subject><subject>Intelligent vehicle-highway systems</subject><subject>Machine learning</subject><subject>Modelling</subject><subject>Multiagent systems</subject><subject>Multimodal transportation systems</subject><subject>Negotiations</subject><subject>Neural networks</subject><subject>Passengers</subject><subject>Predictive control</subject><subject>Software</subject><subject>Sustainable urban development</subject><subject>Traffic</subject><subject>Traffic congestion</subject><subject>Traffic engineering</subject><subject>Traffic intersections</subject><subject>Transportation networks</subject><subject>Travel time</subject><subject>Urban transportation</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkT1PwzAQhiMEEhX0F7BYYk7xR_PhsaqgILUCiXaOHPucunLsYjtD_z0pZWDgbrjT6X3eG94seyB4xhjHT2BBpuCdkZFQXBJa11fZhOKK55xyev1nv82mMR7wWJywmuFJljZegTWuQ8Ip9BFAGZmMd8hr9DnEJIwTrQW0C61waONbY006oV08IyvRA9ruwYcT2gw2GdGBSz9OaQ9o5a0Ch7bQH61IgBa288GkfX-f3WhhI0x_5122e3neLl_z9fvqbblY55KVJOWaa6IBayp5W1fARcGorjkoLQpNuKrmJWs5Y5QXtS6pJIpIkNBWFaZK8ZbdZY8X32PwXwPE1Bz8ENz4sqEVJyXjdVGOqtlF1QkLjXHapyDk2Ap6I70Dbcb7opqzqmRzxkeAXQAZfIwBdHMMphfh1BDcnCNp_omEfQOZKoOj</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Radu, Valentin</creator><creator>Dumitrescu, Catalin</creator><creator>Vasile, Emilia</creator><creator>Tăbîrcă, Alina Iuliana</creator><creator>Stefan, Maria Cristina</creator><creator>Manea, Liliana</creator><creator>Radu, Florin</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-3882-5062</orcidid><orcidid>https://orcid.org/0000-0003-2153-4100</orcidid><orcidid>https://orcid.org/0000-0003-3407-8052</orcidid><orcidid>https://orcid.org/0000-0003-3166-3192</orcidid></search><sort><creationdate>20230301</creationdate><title>Modeling and Prediction of Sustainable Urban Mobility Using Game Theory Multiagent and the Golden Template Algorithm</title><author>Radu, Valentin ; Dumitrescu, Catalin ; Vasile, Emilia ; Tăbîrcă, Alina Iuliana ; Stefan, Maria Cristina ; Manea, Liliana ; Radu, Florin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-f9f1fe0f2c9b87e9a532f89edfa5f19d7463b9332958f62c1d1ceceb7702dd9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Big Data</topic><topic>Decision making</topic><topic>Decision support systems</topic><topic>Decision theory</topic><topic>Design</topic><topic>Game theory</topic><topic>Generators</topic><topic>Intelligent transportation systems</topic><topic>Intelligent vehicle-highway systems</topic><topic>Machine learning</topic><topic>Modelling</topic><topic>Multiagent systems</topic><topic>Multimodal transportation systems</topic><topic>Negotiations</topic><topic>Neural networks</topic><topic>Passengers</topic><topic>Predictive control</topic><topic>Software</topic><topic>Sustainable urban development</topic><topic>Traffic</topic><topic>Traffic congestion</topic><topic>Traffic engineering</topic><topic>Traffic intersections</topic><topic>Transportation networks</topic><topic>Travel time</topic><topic>Urban transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Radu, Valentin</creatorcontrib><creatorcontrib>Dumitrescu, Catalin</creatorcontrib><creatorcontrib>Vasile, Emilia</creatorcontrib><creatorcontrib>Tăbîrcă, Alina Iuliana</creatorcontrib><creatorcontrib>Stefan, Maria Cristina</creatorcontrib><creatorcontrib>Manea, Liliana</creatorcontrib><creatorcontrib>Radu, Florin</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Radu, Valentin</au><au>Dumitrescu, Catalin</au><au>Vasile, Emilia</au><au>Tăbîrcă, Alina Iuliana</au><au>Stefan, Maria Cristina</au><au>Manea, Liliana</au><au>Radu, Florin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and Prediction of Sustainable Urban Mobility Using Game Theory Multiagent and the Golden Template Algorithm</atitle><jtitle>Electronics (Basel)</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>12</volume><issue>6</issue><spage>1288</spage><pages>1288-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>The current development of multimodal transport networks focuses on the realization of intelligent transport systems (ITS) to manage the prediction of traffic congestion and urban mobility of vehicles and passengers so that alternative routes can be recommended for transport, especially the use of public passenger transport, to achieve sustainable transport. In the article, we propose an algorithm and a methodology for solving multidimensional traffic congestion objectives, especially for intersections, based on combining machine learning with the templates method—the golden template algorithm with the multiagent game theory. Intersections are modeled as independent players who had to reach an agreement using Nash negotiation. The obtained results showed that the Nash negotiation with multiagents and the golden template modeling have superior results to the model predictive control (MPC) algorithm, improving travel time, the length of traffic queues, the efficiency of travel flows in an unknown and dynamic environment, and the coordination of the agents’ actions and decision making. The proposed algorithm can be used in planning public passenger transport on alternative routes and in ITS management decision making.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics12061288</doi><orcidid>https://orcid.org/0000-0002-3882-5062</orcidid><orcidid>https://orcid.org/0000-0003-2153-4100</orcidid><orcidid>https://orcid.org/0000-0003-3407-8052</orcidid><orcidid>https://orcid.org/0000-0003-3166-3192</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2023-03, Vol.12 (6), p.1288 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2791639856 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB Electronic Journals Library |
subjects | Algorithms Analysis Big Data Decision making Decision support systems Decision theory Design Game theory Generators Intelligent transportation systems Intelligent vehicle-highway systems Machine learning Modelling Multiagent systems Multimodal transportation systems Negotiations Neural networks Passengers Predictive control Software Sustainable urban development Traffic Traffic congestion Traffic engineering Traffic intersections Transportation networks Travel time Urban transportation |
title | Modeling and Prediction of Sustainable Urban Mobility Using Game Theory Multiagent and the Golden Template Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T17%3A22%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20Prediction%20of%20Sustainable%20Urban%20Mobility%20Using%20Game%20Theory%20Multiagent%20and%20the%20Golden%20Template%20Algorithm&rft.jtitle=Electronics%20(Basel)&rft.au=Radu,%20Valentin&rft.date=2023-03-01&rft.volume=12&rft.issue=6&rft.spage=1288&rft.pages=1288-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics12061288&rft_dat=%3Cgale_proqu%3EA743763439%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2791639856&rft_id=info:pmid/&rft_galeid=A743763439&rfr_iscdi=true |