Machine Learning–Based Profiling in Test Cheating Detection

In recent years, machine learning (ML) techniques have received more attention in detecting aberrant test‐taking behaviors due to advantages when compared to traditional data forensics methods. However, defining “True Test Cheaters” is challenging—different than other fraud detection tasks such as f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Educational measurement, issues and practice issues and practice, 2023-03, Vol.42 (1), p.59-75
Hauptverfasser: Meng, Huijuan, Ma, Ye
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 75
container_issue 1
container_start_page 59
container_title Educational measurement, issues and practice
container_volume 42
creator Meng, Huijuan
Ma, Ye
description In recent years, machine learning (ML) techniques have received more attention in detecting aberrant test‐taking behaviors due to advantages when compared to traditional data forensics methods. However, defining “True Test Cheaters” is challenging—different than other fraud detection tasks such as flagging forged bank checks or credit card frauds, testing organizations are often lack of physical evidences to identify “True Test Cheaters” to train ML models. This study proposed a statistically defensible method of labeling “True Test Cheaters” in the data, demonstrated the effectiveness of using ML approaches to identify irregular statistical patterns in exam data, and established an analytical framework for evaluating and conducting real‐time ML‐based test data forensics. Classification accuracy and false negative/positive results are evaluated across different supervised‐ML techniques. The reliability and feasibility of operationally using this approach for an IT certification exam are evaluated using real data.
doi_str_mv 10.1111/emip.12541
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2791064330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1371338</ericid><sourcerecordid>2791064330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2451-658cc51e2932db7b976ce816347bd100bfe9b5d3d25027223345402eb65ef5b83</originalsourceid><addsrcrecordid>eNp9kM1Kw0AUhQdRsFY37oWAOyF17vxkmoULrfWPFruo6yEzubFT2qTOpEh3voNv6JOYGHHp3Vw49-OcyyHkFOgAmrnEtdsMgEkBe6QHSsiYpynbJz2qOMStcEiOQlhSCjJJVY9cTTO7cCVGE8x86crXr4_PmyxgHs18VbhVo0SujOYY6mi0wKxuhVus0dauKo_JQZGtAp787j55uRvPRw_x5Pn-cXQ9iS0TEuJEDq2VgCzlLDfKpCqxOISEC2VyoNQUmBqZ85xJyhRjnAspKEOTSCykGfI-Oe98N7562za_6GW19WUTqZlKgSaCc9pQFx1lfRWCx0JvvFtnfqeB6rYe3dajf-pp4LMORu_sHzh-Aq6A8zYSuvu7W-HuHyc9nj7OOs9vOz5v2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791064330</pqid></control><display><type>article</type><title>Machine Learning–Based Profiling in Test Cheating Detection</title><source>Education Source</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Meng, Huijuan ; Ma, Ye</creator><creatorcontrib>Meng, Huijuan ; Ma, Ye</creatorcontrib><description>In recent years, machine learning (ML) techniques have received more attention in detecting aberrant test‐taking behaviors due to advantages when compared to traditional data forensics methods. However, defining “True Test Cheaters” is challenging—different than other fraud detection tasks such as flagging forged bank checks or credit card frauds, testing organizations are often lack of physical evidences to identify “True Test Cheaters” to train ML models. This study proposed a statistically defensible method of labeling “True Test Cheaters” in the data, demonstrated the effectiveness of using ML approaches to identify irregular statistical patterns in exam data, and established an analytical framework for evaluating and conducting real‐time ML‐based test data forensics. Classification accuracy and false negative/positive results are evaluated across different supervised‐ML techniques. The reliability and feasibility of operationally using this approach for an IT certification exam are evaluated using real data.</description><identifier>ISSN: 0731-1745</identifier><identifier>EISSN: 1745-3992</identifier><identifier>DOI: 10.1111/emip.12541</identifier><language>eng</language><publisher>Washington: Wiley</publisher><subject>Artificial Intelligence ; Cheating ; Educational tests &amp; measurements ; Information Technology ; Machine learning ; Pattern Recognition ; test security ; Testing</subject><ispartof>Educational measurement, issues and practice, 2023-03, Vol.42 (1), p.59-75</ispartof><rights>2023 by the National Council on Measurement in Education.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2451-658cc51e2932db7b976ce816347bd100bfe9b5d3d25027223345402eb65ef5b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Femip.12541$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Femip.12541$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1371338$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Meng, Huijuan</creatorcontrib><creatorcontrib>Ma, Ye</creatorcontrib><title>Machine Learning–Based Profiling in Test Cheating Detection</title><title>Educational measurement, issues and practice</title><description>In recent years, machine learning (ML) techniques have received more attention in detecting aberrant test‐taking behaviors due to advantages when compared to traditional data forensics methods. However, defining “True Test Cheaters” is challenging—different than other fraud detection tasks such as flagging forged bank checks or credit card frauds, testing organizations are often lack of physical evidences to identify “True Test Cheaters” to train ML models. This study proposed a statistically defensible method of labeling “True Test Cheaters” in the data, demonstrated the effectiveness of using ML approaches to identify irregular statistical patterns in exam data, and established an analytical framework for evaluating and conducting real‐time ML‐based test data forensics. Classification accuracy and false negative/positive results are evaluated across different supervised‐ML techniques. The reliability and feasibility of operationally using this approach for an IT certification exam are evaluated using real data.</description><subject>Artificial Intelligence</subject><subject>Cheating</subject><subject>Educational tests &amp; measurements</subject><subject>Information Technology</subject><subject>Machine learning</subject><subject>Pattern Recognition</subject><subject>test security</subject><subject>Testing</subject><issn>0731-1745</issn><issn>1745-3992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Kw0AUhQdRsFY37oWAOyF17vxkmoULrfWPFruo6yEzubFT2qTOpEh3voNv6JOYGHHp3Vw49-OcyyHkFOgAmrnEtdsMgEkBe6QHSsiYpynbJz2qOMStcEiOQlhSCjJJVY9cTTO7cCVGE8x86crXr4_PmyxgHs18VbhVo0SujOYY6mi0wKxuhVus0dauKo_JQZGtAp787j55uRvPRw_x5Pn-cXQ9iS0TEuJEDq2VgCzlLDfKpCqxOISEC2VyoNQUmBqZ85xJyhRjnAspKEOTSCykGfI-Oe98N7562za_6GW19WUTqZlKgSaCc9pQFx1lfRWCx0JvvFtnfqeB6rYe3dajf-pp4LMORu_sHzh-Aq6A8zYSuvu7W-HuHyc9nj7OOs9vOz5v2Q</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Meng, Huijuan</creator><creator>Ma, Ye</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230301</creationdate><title>Machine Learning–Based Profiling in Test Cheating Detection</title><author>Meng, Huijuan ; Ma, Ye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2451-658cc51e2932db7b976ce816347bd100bfe9b5d3d25027223345402eb65ef5b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Cheating</topic><topic>Educational tests &amp; measurements</topic><topic>Information Technology</topic><topic>Machine learning</topic><topic>Pattern Recognition</topic><topic>test security</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Huijuan</creatorcontrib><creatorcontrib>Ma, Ye</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><jtitle>Educational measurement, issues and practice</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Huijuan</au><au>Ma, Ye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1371338</ericid><atitle>Machine Learning–Based Profiling in Test Cheating Detection</atitle><jtitle>Educational measurement, issues and practice</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>42</volume><issue>1</issue><spage>59</spage><epage>75</epage><pages>59-75</pages><issn>0731-1745</issn><eissn>1745-3992</eissn><abstract>In recent years, machine learning (ML) techniques have received more attention in detecting aberrant test‐taking behaviors due to advantages when compared to traditional data forensics methods. However, defining “True Test Cheaters” is challenging—different than other fraud detection tasks such as flagging forged bank checks or credit card frauds, testing organizations are often lack of physical evidences to identify “True Test Cheaters” to train ML models. This study proposed a statistically defensible method of labeling “True Test Cheaters” in the data, demonstrated the effectiveness of using ML approaches to identify irregular statistical patterns in exam data, and established an analytical framework for evaluating and conducting real‐time ML‐based test data forensics. Classification accuracy and false negative/positive results are evaluated across different supervised‐ML techniques. The reliability and feasibility of operationally using this approach for an IT certification exam are evaluated using real data.</abstract><cop>Washington</cop><pub>Wiley</pub><doi>10.1111/emip.12541</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0731-1745
ispartof Educational measurement, issues and practice, 2023-03, Vol.42 (1), p.59-75
issn 0731-1745
1745-3992
language eng
recordid cdi_proquest_journals_2791064330
source Education Source; Wiley Online Library Journals Frontfile Complete
subjects Artificial Intelligence
Cheating
Educational tests & measurements
Information Technology
Machine learning
Pattern Recognition
test security
Testing
title Machine Learning–Based Profiling in Test Cheating Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A36%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%E2%80%93Based%20Profiling%20in%20Test%20Cheating%20Detection&rft.jtitle=Educational%20measurement,%20issues%20and%20practice&rft.au=Meng,%20Huijuan&rft.date=2023-03-01&rft.volume=42&rft.issue=1&rft.spage=59&rft.epage=75&rft.pages=59-75&rft.issn=0731-1745&rft.eissn=1745-3992&rft_id=info:doi/10.1111/emip.12541&rft_dat=%3Cproquest_cross%3E2791064330%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2791064330&rft_id=info:pmid/&rft_ericid=EJ1371338&rfr_iscdi=true