Power Forward Performance in Semimartingale Markets with Stochastic Integrated Factors

We study the forward investment performance process (FIPP) in an incomplete semimartingale market model with closed and convex portfolio constraints, when the investor’s risk preferences are of the power form. We provide necessary and sufficient conditions for the existence of such a FIPP. In a semi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of operations research 2023-02, Vol.48 (1), p.288-312
1. Verfasser: Bo, Lijun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 312
container_issue 1
container_start_page 288
container_title Mathematics of operations research
container_volume 48
creator Bo, Lijun
description We study the forward investment performance process (FIPP) in an incomplete semimartingale market model with closed and convex portfolio constraints, when the investor’s risk preferences are of the power form. We provide necessary and sufficient conditions for the existence of such a FIPP. In a semimartingale factor model, we show that the FIPP can be recovered as a triplet of processes that admit an integral representation with respect to semimartingales. Using an integrated stochastic factor model, we relate the factor representation of the triplet of processes to the smooth solution of an ill-posed partial integro-differential Hamilton–Jacobi–Bellman equation. We develop explicit constructions for the class of time-monotone FIPPs, generalizing existing results from Brownian to semimartingale market models. Funding: L. Bo was supported by the National Natural Science Foundation of China (NSFC) [Grant 11971368] and National Center for Applied Mathematics in Shaanxi (NCAMS). A. Capponi was supported in part by the National Science Foundation [Grant DMS-1716145]. C. Zhou was supported by the Singapore Ministry of Education Academic Research Fund [Grant R-146-000-271-112] and NSFC [Grant 11871364].
doi_str_mv 10.1287/moor.2022.1262
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2790444268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2790444268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-555ed74a3473589e780e73223489ab36b0ba5156e0f8aeb1997d90cddeee1d993</originalsourceid><addsrcrecordid>eNqFkM9LwzAUx4MoOKdXzwHPnUman0cZTgcTB1PxFtL2devcGk0yhv-9LRU8eno8-P5474PQNSUTyrS63XsfJoww1q2SnaARFUxmgit6ikYklzxTUryfo4sYt4RQoSgfobelP0LAMx-OLlR4CaH2Ye_aEnDT4hXsm70LqWnXbgf4yYUPSBEfm7TBq-TLjYupKfG8TbAOLkGFZ65MPsRLdFa7XYSr3zlGr7P7l-ljtnh-mE_vFlmZS5YyIQRUirucq1xoA0oTUDljOdfGFbksSOEEFRJIrR0U1BhVGVJWFQDQyph8jG6G3M_gvw4Qk936Q2i7SsuUIZxzJnWnmgyqMvgYA9T2M_R_fVtKbM_O9uxsz8727DoDHgxQ-raJf3ItuusY0X1zNkiaticW_4v8AWMGfEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2790444268</pqid></control><display><type>article</type><title>Power Forward Performance in Semimartingale Markets with Stochastic Integrated Factors</title><source>Informs</source><creator>Bo, Lijun</creator><creatorcontrib>Bo, Lijun</creatorcontrib><description>We study the forward investment performance process (FIPP) in an incomplete semimartingale market model with closed and convex portfolio constraints, when the investor’s risk preferences are of the power form. We provide necessary and sufficient conditions for the existence of such a FIPP. In a semimartingale factor model, we show that the FIPP can be recovered as a triplet of processes that admit an integral representation with respect to semimartingales. Using an integrated stochastic factor model, we relate the factor representation of the triplet of processes to the smooth solution of an ill-posed partial integro-differential Hamilton–Jacobi–Bellman equation. We develop explicit constructions for the class of time-monotone FIPPs, generalizing existing results from Brownian to semimartingale market models. Funding: L. Bo was supported by the National Natural Science Foundation of China (NSFC) [Grant 11971368] and National Center for Applied Mathematics in Shaanxi (NCAMS). A. Capponi was supported in part by the National Science Foundation [Grant DMS-1716145]. C. Zhou was supported by the Singapore Ministry of Education Academic Research Fund [Grant R-146-000-271-112] and NSFC [Grant 11871364].</description><identifier>ISSN: 0364-765X</identifier><identifier>EISSN: 1526-5471</identifier><identifier>DOI: 10.1287/moor.2022.1262</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>3E20, 60J20, 37A50 ; Brownian motion ; Constraint modelling ; Convex analysis ; Differential equations ; forward performance process ; ill-posed HJB equation ; Investment ; Mathematical models ; Operations research ; portfolio constraints ; Representations ; semimartingale market ; Stochastic models ; time-monotone process</subject><ispartof>Mathematics of operations research, 2023-02, Vol.48 (1), p.288-312</ispartof><rights>Copyright Institute for Operations Research and the Management Sciences Feb 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-555ed74a3473589e780e73223489ab36b0ba5156e0f8aeb1997d90cddeee1d993</citedby><cites>FETCH-LOGICAL-c362t-555ed74a3473589e780e73223489ab36b0ba5156e0f8aeb1997d90cddeee1d993</cites><orcidid>0000-0002-3353-5146 ; 0000-0003-4914-6150 ; 0000-0001-9735-7935</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/moor.2022.1262$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,3692,27924,27925,62616</link.rule.ids></links><search><creatorcontrib>Bo, Lijun</creatorcontrib><title>Power Forward Performance in Semimartingale Markets with Stochastic Integrated Factors</title><title>Mathematics of operations research</title><description>We study the forward investment performance process (FIPP) in an incomplete semimartingale market model with closed and convex portfolio constraints, when the investor’s risk preferences are of the power form. We provide necessary and sufficient conditions for the existence of such a FIPP. In a semimartingale factor model, we show that the FIPP can be recovered as a triplet of processes that admit an integral representation with respect to semimartingales. Using an integrated stochastic factor model, we relate the factor representation of the triplet of processes to the smooth solution of an ill-posed partial integro-differential Hamilton–Jacobi–Bellman equation. We develop explicit constructions for the class of time-monotone FIPPs, generalizing existing results from Brownian to semimartingale market models. Funding: L. Bo was supported by the National Natural Science Foundation of China (NSFC) [Grant 11971368] and National Center for Applied Mathematics in Shaanxi (NCAMS). A. Capponi was supported in part by the National Science Foundation [Grant DMS-1716145]. C. Zhou was supported by the Singapore Ministry of Education Academic Research Fund [Grant R-146-000-271-112] and NSFC [Grant 11871364].</description><subject>3E20, 60J20, 37A50</subject><subject>Brownian motion</subject><subject>Constraint modelling</subject><subject>Convex analysis</subject><subject>Differential equations</subject><subject>forward performance process</subject><subject>ill-posed HJB equation</subject><subject>Investment</subject><subject>Mathematical models</subject><subject>Operations research</subject><subject>portfolio constraints</subject><subject>Representations</subject><subject>semimartingale market</subject><subject>Stochastic models</subject><subject>time-monotone process</subject><issn>0364-765X</issn><issn>1526-5471</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAUx4MoOKdXzwHPnUman0cZTgcTB1PxFtL2devcGk0yhv-9LRU8eno8-P5474PQNSUTyrS63XsfJoww1q2SnaARFUxmgit6ikYklzxTUryfo4sYt4RQoSgfobelP0LAMx-OLlR4CaH2Ye_aEnDT4hXsm70LqWnXbgf4yYUPSBEfm7TBq-TLjYupKfG8TbAOLkGFZ65MPsRLdFa7XYSr3zlGr7P7l-ljtnh-mE_vFlmZS5YyIQRUirucq1xoA0oTUDljOdfGFbksSOEEFRJIrR0U1BhVGVJWFQDQyph8jG6G3M_gvw4Qk936Q2i7SsuUIZxzJnWnmgyqMvgYA9T2M_R_fVtKbM_O9uxsz8727DoDHgxQ-raJf3ItuusY0X1zNkiaticW_4v8AWMGfEA</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Bo, Lijun</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-3353-5146</orcidid><orcidid>https://orcid.org/0000-0003-4914-6150</orcidid><orcidid>https://orcid.org/0000-0001-9735-7935</orcidid></search><sort><creationdate>20230201</creationdate><title>Power Forward Performance in Semimartingale Markets with Stochastic Integrated Factors</title><author>Bo, Lijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-555ed74a3473589e780e73223489ab36b0ba5156e0f8aeb1997d90cddeee1d993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3E20, 60J20, 37A50</topic><topic>Brownian motion</topic><topic>Constraint modelling</topic><topic>Convex analysis</topic><topic>Differential equations</topic><topic>forward performance process</topic><topic>ill-posed HJB equation</topic><topic>Investment</topic><topic>Mathematical models</topic><topic>Operations research</topic><topic>portfolio constraints</topic><topic>Representations</topic><topic>semimartingale market</topic><topic>Stochastic models</topic><topic>time-monotone process</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bo, Lijun</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Mathematics of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bo, Lijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Power Forward Performance in Semimartingale Markets with Stochastic Integrated Factors</atitle><jtitle>Mathematics of operations research</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>48</volume><issue>1</issue><spage>288</spage><epage>312</epage><pages>288-312</pages><issn>0364-765X</issn><eissn>1526-5471</eissn><abstract>We study the forward investment performance process (FIPP) in an incomplete semimartingale market model with closed and convex portfolio constraints, when the investor’s risk preferences are of the power form. We provide necessary and sufficient conditions for the existence of such a FIPP. In a semimartingale factor model, we show that the FIPP can be recovered as a triplet of processes that admit an integral representation with respect to semimartingales. Using an integrated stochastic factor model, we relate the factor representation of the triplet of processes to the smooth solution of an ill-posed partial integro-differential Hamilton–Jacobi–Bellman equation. We develop explicit constructions for the class of time-monotone FIPPs, generalizing existing results from Brownian to semimartingale market models. Funding: L. Bo was supported by the National Natural Science Foundation of China (NSFC) [Grant 11971368] and National Center for Applied Mathematics in Shaanxi (NCAMS). A. Capponi was supported in part by the National Science Foundation [Grant DMS-1716145]. C. Zhou was supported by the Singapore Ministry of Education Academic Research Fund [Grant R-146-000-271-112] and NSFC [Grant 11871364].</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/moor.2022.1262</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-3353-5146</orcidid><orcidid>https://orcid.org/0000-0003-4914-6150</orcidid><orcidid>https://orcid.org/0000-0001-9735-7935</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0364-765X
ispartof Mathematics of operations research, 2023-02, Vol.48 (1), p.288-312
issn 0364-765X
1526-5471
language eng
recordid cdi_proquest_journals_2790444268
source Informs
subjects 3E20, 60J20, 37A50
Brownian motion
Constraint modelling
Convex analysis
Differential equations
forward performance process
ill-posed HJB equation
Investment
Mathematical models
Operations research
portfolio constraints
Representations
semimartingale market
Stochastic models
time-monotone process
title Power Forward Performance in Semimartingale Markets with Stochastic Integrated Factors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A35%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Power%20Forward%20Performance%20in%20Semimartingale%20Markets%20with%20Stochastic%20Integrated%20Factors&rft.jtitle=Mathematics%20of%20operations%20research&rft.au=Bo,%20Lijun&rft.date=2023-02-01&rft.volume=48&rft.issue=1&rft.spage=288&rft.epage=312&rft.pages=288-312&rft.issn=0364-765X&rft.eissn=1526-5471&rft_id=info:doi/10.1287/moor.2022.1262&rft_dat=%3Cproquest_cross%3E2790444268%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2790444268&rft_id=info:pmid/&rfr_iscdi=true