Power Forward Performance in Semimartingale Markets with Stochastic Integrated Factors
We study the forward investment performance process (FIPP) in an incomplete semimartingale market model with closed and convex portfolio constraints, when the investor’s risk preferences are of the power form. We provide necessary and sufficient conditions for the existence of such a FIPP. In a semi...
Gespeichert in:
Veröffentlicht in: | Mathematics of operations research 2023-02, Vol.48 (1), p.288-312 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 312 |
---|---|
container_issue | 1 |
container_start_page | 288 |
container_title | Mathematics of operations research |
container_volume | 48 |
creator | Bo, Lijun |
description | We study the forward investment performance process (FIPP) in an incomplete semimartingale market model with closed and convex portfolio constraints, when the investor’s risk preferences are of the power form. We provide necessary and sufficient conditions for the existence of such a FIPP. In a semimartingale factor model, we show that the FIPP can be recovered as a triplet of processes that admit an integral representation with respect to semimartingales. Using an integrated stochastic factor model, we relate the factor representation of the triplet of processes to the smooth solution of an ill-posed partial integro-differential Hamilton–Jacobi–Bellman equation. We develop explicit constructions for the class of time-monotone FIPPs, generalizing existing results from Brownian to semimartingale market models.
Funding:
L. Bo was supported by the National Natural Science Foundation of China (NSFC) [Grant 11971368] and National Center for Applied Mathematics in Shaanxi (NCAMS). A. Capponi was supported in part by the National Science Foundation [Grant DMS-1716145]. C. Zhou was supported by the Singapore Ministry of Education Academic Research Fund [Grant R-146-000-271-112] and NSFC [Grant 11871364]. |
doi_str_mv | 10.1287/moor.2022.1262 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2790444268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2790444268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-555ed74a3473589e780e73223489ab36b0ba5156e0f8aeb1997d90cddeee1d993</originalsourceid><addsrcrecordid>eNqFkM9LwzAUx4MoOKdXzwHPnUman0cZTgcTB1PxFtL2devcGk0yhv-9LRU8eno8-P5474PQNSUTyrS63XsfJoww1q2SnaARFUxmgit6ikYklzxTUryfo4sYt4RQoSgfobelP0LAMx-OLlR4CaH2Ye_aEnDT4hXsm70LqWnXbgf4yYUPSBEfm7TBq-TLjYupKfG8TbAOLkGFZ65MPsRLdFa7XYSr3zlGr7P7l-ljtnh-mE_vFlmZS5YyIQRUirucq1xoA0oTUDljOdfGFbksSOEEFRJIrR0U1BhVGVJWFQDQyph8jG6G3M_gvw4Qk936Q2i7SsuUIZxzJnWnmgyqMvgYA9T2M_R_fVtKbM_O9uxsz8727DoDHgxQ-raJf3ItuusY0X1zNkiaticW_4v8AWMGfEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2790444268</pqid></control><display><type>article</type><title>Power Forward Performance in Semimartingale Markets with Stochastic Integrated Factors</title><source>Informs</source><creator>Bo, Lijun</creator><creatorcontrib>Bo, Lijun</creatorcontrib><description>We study the forward investment performance process (FIPP) in an incomplete semimartingale market model with closed and convex portfolio constraints, when the investor’s risk preferences are of the power form. We provide necessary and sufficient conditions for the existence of such a FIPP. In a semimartingale factor model, we show that the FIPP can be recovered as a triplet of processes that admit an integral representation with respect to semimartingales. Using an integrated stochastic factor model, we relate the factor representation of the triplet of processes to the smooth solution of an ill-posed partial integro-differential Hamilton–Jacobi–Bellman equation. We develop explicit constructions for the class of time-monotone FIPPs, generalizing existing results from Brownian to semimartingale market models.
Funding:
L. Bo was supported by the National Natural Science Foundation of China (NSFC) [Grant 11971368] and National Center for Applied Mathematics in Shaanxi (NCAMS). A. Capponi was supported in part by the National Science Foundation [Grant DMS-1716145]. C. Zhou was supported by the Singapore Ministry of Education Academic Research Fund [Grant R-146-000-271-112] and NSFC [Grant 11871364].</description><identifier>ISSN: 0364-765X</identifier><identifier>EISSN: 1526-5471</identifier><identifier>DOI: 10.1287/moor.2022.1262</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>3E20, 60J20, 37A50 ; Brownian motion ; Constraint modelling ; Convex analysis ; Differential equations ; forward performance process ; ill-posed HJB equation ; Investment ; Mathematical models ; Operations research ; portfolio constraints ; Representations ; semimartingale market ; Stochastic models ; time-monotone process</subject><ispartof>Mathematics of operations research, 2023-02, Vol.48 (1), p.288-312</ispartof><rights>Copyright Institute for Operations Research and the Management Sciences Feb 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-555ed74a3473589e780e73223489ab36b0ba5156e0f8aeb1997d90cddeee1d993</citedby><cites>FETCH-LOGICAL-c362t-555ed74a3473589e780e73223489ab36b0ba5156e0f8aeb1997d90cddeee1d993</cites><orcidid>0000-0002-3353-5146 ; 0000-0003-4914-6150 ; 0000-0001-9735-7935</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/moor.2022.1262$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,3692,27924,27925,62616</link.rule.ids></links><search><creatorcontrib>Bo, Lijun</creatorcontrib><title>Power Forward Performance in Semimartingale Markets with Stochastic Integrated Factors</title><title>Mathematics of operations research</title><description>We study the forward investment performance process (FIPP) in an incomplete semimartingale market model with closed and convex portfolio constraints, when the investor’s risk preferences are of the power form. We provide necessary and sufficient conditions for the existence of such a FIPP. In a semimartingale factor model, we show that the FIPP can be recovered as a triplet of processes that admit an integral representation with respect to semimartingales. Using an integrated stochastic factor model, we relate the factor representation of the triplet of processes to the smooth solution of an ill-posed partial integro-differential Hamilton–Jacobi–Bellman equation. We develop explicit constructions for the class of time-monotone FIPPs, generalizing existing results from Brownian to semimartingale market models.
Funding:
L. Bo was supported by the National Natural Science Foundation of China (NSFC) [Grant 11971368] and National Center for Applied Mathematics in Shaanxi (NCAMS). A. Capponi was supported in part by the National Science Foundation [Grant DMS-1716145]. C. Zhou was supported by the Singapore Ministry of Education Academic Research Fund [Grant R-146-000-271-112] and NSFC [Grant 11871364].</description><subject>3E20, 60J20, 37A50</subject><subject>Brownian motion</subject><subject>Constraint modelling</subject><subject>Convex analysis</subject><subject>Differential equations</subject><subject>forward performance process</subject><subject>ill-posed HJB equation</subject><subject>Investment</subject><subject>Mathematical models</subject><subject>Operations research</subject><subject>portfolio constraints</subject><subject>Representations</subject><subject>semimartingale market</subject><subject>Stochastic models</subject><subject>time-monotone process</subject><issn>0364-765X</issn><issn>1526-5471</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAUx4MoOKdXzwHPnUman0cZTgcTB1PxFtL2devcGk0yhv-9LRU8eno8-P5474PQNSUTyrS63XsfJoww1q2SnaARFUxmgit6ikYklzxTUryfo4sYt4RQoSgfobelP0LAMx-OLlR4CaH2Ye_aEnDT4hXsm70LqWnXbgf4yYUPSBEfm7TBq-TLjYupKfG8TbAOLkGFZ65MPsRLdFa7XYSr3zlGr7P7l-ljtnh-mE_vFlmZS5YyIQRUirucq1xoA0oTUDljOdfGFbksSOEEFRJIrR0U1BhVGVJWFQDQyph8jG6G3M_gvw4Qk936Q2i7SsuUIZxzJnWnmgyqMvgYA9T2M_R_fVtKbM_O9uxsz8727DoDHgxQ-raJf3ItuusY0X1zNkiaticW_4v8AWMGfEA</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Bo, Lijun</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-3353-5146</orcidid><orcidid>https://orcid.org/0000-0003-4914-6150</orcidid><orcidid>https://orcid.org/0000-0001-9735-7935</orcidid></search><sort><creationdate>20230201</creationdate><title>Power Forward Performance in Semimartingale Markets with Stochastic Integrated Factors</title><author>Bo, Lijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-555ed74a3473589e780e73223489ab36b0ba5156e0f8aeb1997d90cddeee1d993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3E20, 60J20, 37A50</topic><topic>Brownian motion</topic><topic>Constraint modelling</topic><topic>Convex analysis</topic><topic>Differential equations</topic><topic>forward performance process</topic><topic>ill-posed HJB equation</topic><topic>Investment</topic><topic>Mathematical models</topic><topic>Operations research</topic><topic>portfolio constraints</topic><topic>Representations</topic><topic>semimartingale market</topic><topic>Stochastic models</topic><topic>time-monotone process</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bo, Lijun</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Mathematics of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bo, Lijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Power Forward Performance in Semimartingale Markets with Stochastic Integrated Factors</atitle><jtitle>Mathematics of operations research</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>48</volume><issue>1</issue><spage>288</spage><epage>312</epage><pages>288-312</pages><issn>0364-765X</issn><eissn>1526-5471</eissn><abstract>We study the forward investment performance process (FIPP) in an incomplete semimartingale market model with closed and convex portfolio constraints, when the investor’s risk preferences are of the power form. We provide necessary and sufficient conditions for the existence of such a FIPP. In a semimartingale factor model, we show that the FIPP can be recovered as a triplet of processes that admit an integral representation with respect to semimartingales. Using an integrated stochastic factor model, we relate the factor representation of the triplet of processes to the smooth solution of an ill-posed partial integro-differential Hamilton–Jacobi–Bellman equation. We develop explicit constructions for the class of time-monotone FIPPs, generalizing existing results from Brownian to semimartingale market models.
Funding:
L. Bo was supported by the National Natural Science Foundation of China (NSFC) [Grant 11971368] and National Center for Applied Mathematics in Shaanxi (NCAMS). A. Capponi was supported in part by the National Science Foundation [Grant DMS-1716145]. C. Zhou was supported by the Singapore Ministry of Education Academic Research Fund [Grant R-146-000-271-112] and NSFC [Grant 11871364].</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/moor.2022.1262</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-3353-5146</orcidid><orcidid>https://orcid.org/0000-0003-4914-6150</orcidid><orcidid>https://orcid.org/0000-0001-9735-7935</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0364-765X |
ispartof | Mathematics of operations research, 2023-02, Vol.48 (1), p.288-312 |
issn | 0364-765X 1526-5471 |
language | eng |
recordid | cdi_proquest_journals_2790444268 |
source | Informs |
subjects | 3E20, 60J20, 37A50 Brownian motion Constraint modelling Convex analysis Differential equations forward performance process ill-posed HJB equation Investment Mathematical models Operations research portfolio constraints Representations semimartingale market Stochastic models time-monotone process |
title | Power Forward Performance in Semimartingale Markets with Stochastic Integrated Factors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A35%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Power%20Forward%20Performance%20in%20Semimartingale%20Markets%20with%20Stochastic%20Integrated%20Factors&rft.jtitle=Mathematics%20of%20operations%20research&rft.au=Bo,%20Lijun&rft.date=2023-02-01&rft.volume=48&rft.issue=1&rft.spage=288&rft.epage=312&rft.pages=288-312&rft.issn=0364-765X&rft.eissn=1526-5471&rft_id=info:doi/10.1287/moor.2022.1262&rft_dat=%3Cproquest_cross%3E2790444268%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2790444268&rft_id=info:pmid/&rfr_iscdi=true |