Computer vision-based predictive analysis of chronic cardiovascular disease using heartbeat features
Heart disease has become one of the world’s most dangerous and serious diseases due to the difficulty in identifying it. Machine learning may assist the medical field by providing accurate and timely illness diagnoses. The main objective is to develop an expert system that can identify heart illness...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2023-04, Vol.82 (10), p.15043-15060 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15060 |
---|---|
container_issue | 10 |
container_start_page | 15043 |
container_title | Multimedia tools and applications |
container_volume | 82 |
creator | Bhatt, Abhishek Choubey, Shruti Bhargava Choubey, Abhishek Pachori, Khushboo Thakur, Vandana |
description | Heart disease has become one of the world’s most dangerous and serious diseases due to the difficulty in identifying it. Machine learning may assist the medical field by providing accurate and timely illness diagnoses. The main objective is to develop an expert system that can identify heart illness early and assist cardiologists in making more accurate diagnoses. This paper examines many aspects of heart illness and develops a model using supervised learning techniques like Logistic Regression, Naïve Bayes, decision trees, K-nearest neighbor (KNN), random forest, Support Vector Machine (SVM), and the XG Boost methods. It utilizes a dataset of the Cleveland catalog of heart patients at UCI. There are around 303 occurrences plus 76 characteristics within the collection. Only 14 out 76 characteristics are tested, despite their importance in proving the effectiveness of alternative algorithms. The accuracy of different classifiers are,in Naive Bayes 83.51%, SVM 84.79%, Decision Tree 77.5%, Random Forest 87.94%, and KNN 80.21%, Logical Regression 85.0% is obtained. Gradient Boost has the highest accuracy rate of 95.62%, Sensitivity of 92.3%, Precision 83.7%, and specificity of 93.8 Percent in the case of same data set we have applied for other classifier. |
doi_str_mv | 10.1007/s11042-022-14020-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2790202279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2790202279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-4e82491197ee7fec9b0a204efa5fae7e6edd3c30df6d2e623a3e34b2d328a03f3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhhdRsFb_gKeA5-gk2d10j1L8AsGLnkM2mbQp7W7N7Bb6742u4M3LvHN4nmF4i-JawK0A0HckBJSSg5RclCCB1yfFTFRaca2lOM27WgDXFYjz4oJoAyDqSpazwi_73X4cMLFDpNh3vLWEnu0T-uiGeEBmO7s9UiTWB-bWqe-iY84mH_uDJTdubWI-EmaNjRS7FVujTUOLdmAhjzEhXRZnwW4Jr35zXnw8Prwvn_nr29PL8v6VO6lh4CUuZNkI0WhEHdA1LVgJJQZbBYsaa_ReOQU-1F5iLZVVqMpWeiUXFlRQ8-JmurtP_eeINJhNP6b8Pxmpm1yLzJEpOVEu9UQJg9mnuLPpaASY7zbN1KbJuPlp09RZUpNEGe5WmP5O_2N9AbdMeio</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2790202279</pqid></control><display><type>article</type><title>Computer vision-based predictive analysis of chronic cardiovascular disease using heartbeat features</title><source>SpringerLink Journals</source><creator>Bhatt, Abhishek ; Choubey, Shruti Bhargava ; Choubey, Abhishek ; Pachori, Khushboo ; Thakur, Vandana</creator><creatorcontrib>Bhatt, Abhishek ; Choubey, Shruti Bhargava ; Choubey, Abhishek ; Pachori, Khushboo ; Thakur, Vandana</creatorcontrib><description>Heart disease has become one of the world’s most dangerous and serious diseases due to the difficulty in identifying it. Machine learning may assist the medical field by providing accurate and timely illness diagnoses. The main objective is to develop an expert system that can identify heart illness early and assist cardiologists in making more accurate diagnoses. This paper examines many aspects of heart illness and develops a model using supervised learning techniques like Logistic Regression, Naïve Bayes, decision trees, K-nearest neighbor (KNN), random forest, Support Vector Machine (SVM), and the XG Boost methods. It utilizes a dataset of the Cleveland catalog of heart patients at UCI. There are around 303 occurrences plus 76 characteristics within the collection. Only 14 out 76 characteristics are tested, despite their importance in proving the effectiveness of alternative algorithms. The accuracy of different classifiers are,in Naive Bayes 83.51%, SVM 84.79%, Decision Tree 77.5%, Random Forest 87.94%, and KNN 80.21%, Logical Regression 85.0% is obtained. Gradient Boost has the highest accuracy rate of 95.62%, Sensitivity of 92.3%, Precision 83.7%, and specificity of 93.8 Percent in the case of same data set we have applied for other classifier.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-022-14020-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Classifiers ; Computer Communication Networks ; Computer Science ; Computer vision ; Data Structures and Information Theory ; Decision trees ; Expert systems ; Heart ; Heart diseases ; Illnesses ; Machine learning ; Multimedia Information Systems ; Special Purpose and Application-Based Systems ; Supervised learning ; Support vector machines</subject><ispartof>Multimedia tools and applications, 2023-04, Vol.82 (10), p.15043-15060</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-4e82491197ee7fec9b0a204efa5fae7e6edd3c30df6d2e623a3e34b2d328a03f3</cites><orcidid>0000-0001-7743-6070</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-022-14020-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-022-14020-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bhatt, Abhishek</creatorcontrib><creatorcontrib>Choubey, Shruti Bhargava</creatorcontrib><creatorcontrib>Choubey, Abhishek</creatorcontrib><creatorcontrib>Pachori, Khushboo</creatorcontrib><creatorcontrib>Thakur, Vandana</creatorcontrib><title>Computer vision-based predictive analysis of chronic cardiovascular disease using heartbeat features</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Heart disease has become one of the world’s most dangerous and serious diseases due to the difficulty in identifying it. Machine learning may assist the medical field by providing accurate and timely illness diagnoses. The main objective is to develop an expert system that can identify heart illness early and assist cardiologists in making more accurate diagnoses. This paper examines many aspects of heart illness and develops a model using supervised learning techniques like Logistic Regression, Naïve Bayes, decision trees, K-nearest neighbor (KNN), random forest, Support Vector Machine (SVM), and the XG Boost methods. It utilizes a dataset of the Cleveland catalog of heart patients at UCI. There are around 303 occurrences plus 76 characteristics within the collection. Only 14 out 76 characteristics are tested, despite their importance in proving the effectiveness of alternative algorithms. The accuracy of different classifiers are,in Naive Bayes 83.51%, SVM 84.79%, Decision Tree 77.5%, Random Forest 87.94%, and KNN 80.21%, Logical Regression 85.0% is obtained. Gradient Boost has the highest accuracy rate of 95.62%, Sensitivity of 92.3%, Precision 83.7%, and specificity of 93.8 Percent in the case of same data set we have applied for other classifier.</description><subject>Algorithms</subject><subject>Classifiers</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Data Structures and Information Theory</subject><subject>Decision trees</subject><subject>Expert systems</subject><subject>Heart</subject><subject>Heart diseases</subject><subject>Illnesses</subject><subject>Machine learning</subject><subject>Multimedia Information Systems</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Supervised learning</subject><subject>Support vector machines</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEQhhdRsFb_gKeA5-gk2d10j1L8AsGLnkM2mbQp7W7N7Bb6742u4M3LvHN4nmF4i-JawK0A0HckBJSSg5RclCCB1yfFTFRaca2lOM27WgDXFYjz4oJoAyDqSpazwi_73X4cMLFDpNh3vLWEnu0T-uiGeEBmO7s9UiTWB-bWqe-iY84mH_uDJTdubWI-EmaNjRS7FVujTUOLdmAhjzEhXRZnwW4Jr35zXnw8Prwvn_nr29PL8v6VO6lh4CUuZNkI0WhEHdA1LVgJJQZbBYsaa_ReOQU-1F5iLZVVqMpWeiUXFlRQ8-JmurtP_eeINJhNP6b8Pxmpm1yLzJEpOVEu9UQJg9mnuLPpaASY7zbN1KbJuPlp09RZUpNEGe5WmP5O_2N9AbdMeio</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Bhatt, Abhishek</creator><creator>Choubey, Shruti Bhargava</creator><creator>Choubey, Abhishek</creator><creator>Pachori, Khushboo</creator><creator>Thakur, Vandana</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-7743-6070</orcidid></search><sort><creationdate>20230401</creationdate><title>Computer vision-based predictive analysis of chronic cardiovascular disease using heartbeat features</title><author>Bhatt, Abhishek ; Choubey, Shruti Bhargava ; Choubey, Abhishek ; Pachori, Khushboo ; Thakur, Vandana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-4e82491197ee7fec9b0a204efa5fae7e6edd3c30df6d2e623a3e34b2d328a03f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Classifiers</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Data Structures and Information Theory</topic><topic>Decision trees</topic><topic>Expert systems</topic><topic>Heart</topic><topic>Heart diseases</topic><topic>Illnesses</topic><topic>Machine learning</topic><topic>Multimedia Information Systems</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Supervised learning</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhatt, Abhishek</creatorcontrib><creatorcontrib>Choubey, Shruti Bhargava</creatorcontrib><creatorcontrib>Choubey, Abhishek</creatorcontrib><creatorcontrib>Pachori, Khushboo</creatorcontrib><creatorcontrib>Thakur, Vandana</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhatt, Abhishek</au><au>Choubey, Shruti Bhargava</au><au>Choubey, Abhishek</au><au>Pachori, Khushboo</au><au>Thakur, Vandana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer vision-based predictive analysis of chronic cardiovascular disease using heartbeat features</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>82</volume><issue>10</issue><spage>15043</spage><epage>15060</epage><pages>15043-15060</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Heart disease has become one of the world’s most dangerous and serious diseases due to the difficulty in identifying it. Machine learning may assist the medical field by providing accurate and timely illness diagnoses. The main objective is to develop an expert system that can identify heart illness early and assist cardiologists in making more accurate diagnoses. This paper examines many aspects of heart illness and develops a model using supervised learning techniques like Logistic Regression, Naïve Bayes, decision trees, K-nearest neighbor (KNN), random forest, Support Vector Machine (SVM), and the XG Boost methods. It utilizes a dataset of the Cleveland catalog of heart patients at UCI. There are around 303 occurrences plus 76 characteristics within the collection. Only 14 out 76 characteristics are tested, despite their importance in proving the effectiveness of alternative algorithms. The accuracy of different classifiers are,in Naive Bayes 83.51%, SVM 84.79%, Decision Tree 77.5%, Random Forest 87.94%, and KNN 80.21%, Logical Regression 85.0% is obtained. Gradient Boost has the highest accuracy rate of 95.62%, Sensitivity of 92.3%, Precision 83.7%, and specificity of 93.8 Percent in the case of same data set we have applied for other classifier.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-022-14020-6</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-7743-6070</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2023-04, Vol.82 (10), p.15043-15060 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_2790202279 |
source | SpringerLink Journals |
subjects | Algorithms Classifiers Computer Communication Networks Computer Science Computer vision Data Structures and Information Theory Decision trees Expert systems Heart Heart diseases Illnesses Machine learning Multimedia Information Systems Special Purpose and Application-Based Systems Supervised learning Support vector machines |
title | Computer vision-based predictive analysis of chronic cardiovascular disease using heartbeat features |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A24%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer%20vision-based%20predictive%20analysis%20of%20chronic%20cardiovascular%20disease%20using%20heartbeat%20features&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Bhatt,%20Abhishek&rft.date=2023-04-01&rft.volume=82&rft.issue=10&rft.spage=15043&rft.epage=15060&rft.pages=15043-15060&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-022-14020-6&rft_dat=%3Cproquest_cross%3E2790202279%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2790202279&rft_id=info:pmid/&rfr_iscdi=true |