NeRF-GAN Distillation for Efficient 3D-Aware Generation with Convolutions
Pose-conditioned convolutional generative models struggle with high-quality 3D-consistent image generation from single-view datasets, due to their lack of sufficient 3D priors. Recently, the integration of Neural Radiance Fields (NeRFs) and generative models, such as Generative Adversarial Networks...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-07 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Shahbazi, Mohamad Ntavelis, Evangelos Tonioni, Alessio Collins, Edo Danda Pani Paudel Danelljan, Martin Luc Van Gool |
description | Pose-conditioned convolutional generative models struggle with high-quality 3D-consistent image generation from single-view datasets, due to their lack of sufficient 3D priors. Recently, the integration of Neural Radiance Fields (NeRFs) and generative models, such as Generative Adversarial Networks (GANs), has transformed 3D-aware generation from single-view images. NeRF-GANs exploit the strong inductive bias of neural 3D representations and volumetric rendering at the cost of higher computational complexity. This study aims at revisiting pose-conditioned 2D GANs for efficient 3D-aware generation at inference time by distilling 3D knowledge from pretrained NeRF-GANs. We propose a simple and effective method, based on re-using the well-disentangled latent space of a pre-trained NeRF-GAN in a pose-conditioned convolutional network to directly generate 3D-consistent images corresponding to the underlying 3D representations. Experiments on several datasets demonstrate that the proposed method obtains results comparable with volumetric rendering in terms of quality and 3D consistency while benefiting from the computational advantage of convolutional networks. The code will be available at: https://github.com/mshahbazi72/NeRF-GAN-Distillation |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2790190885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2790190885</sourcerecordid><originalsourceid>FETCH-proquest_journals_27901908853</originalsourceid><addsrcrecordid>eNqNir0KwjAYAIMgWLTvEHAOpIm17Vj6p0sH6V6CfMGUkGiS2tdX0QdwOri7FYoY5wnJD4xtUOz9RCllx4ylKY_QuYdLS7qyx7XyQWktgrIGS-twI6W6KjAB85qUi3CAOzDgvseiwg1X1jytnj_C79BaCu0h_nGL9m0zVCdyd_Yxgw_jZGdn3mlkWUGTguZ5yv-7Xu7OO5E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2790190885</pqid></control><display><type>article</type><title>NeRF-GAN Distillation for Efficient 3D-Aware Generation with Convolutions</title><source>Free E- Journals</source><creator>Shahbazi, Mohamad ; Ntavelis, Evangelos ; Tonioni, Alessio ; Collins, Edo ; Danda Pani Paudel ; Danelljan, Martin ; Luc Van Gool</creator><creatorcontrib>Shahbazi, Mohamad ; Ntavelis, Evangelos ; Tonioni, Alessio ; Collins, Edo ; Danda Pani Paudel ; Danelljan, Martin ; Luc Van Gool</creatorcontrib><description>Pose-conditioned convolutional generative models struggle with high-quality 3D-consistent image generation from single-view datasets, due to their lack of sufficient 3D priors. Recently, the integration of Neural Radiance Fields (NeRFs) and generative models, such as Generative Adversarial Networks (GANs), has transformed 3D-aware generation from single-view images. NeRF-GANs exploit the strong inductive bias of neural 3D representations and volumetric rendering at the cost of higher computational complexity. This study aims at revisiting pose-conditioned 2D GANs for efficient 3D-aware generation at inference time by distilling 3D knowledge from pretrained NeRF-GANs. We propose a simple and effective method, based on re-using the well-disentangled latent space of a pre-trained NeRF-GAN in a pose-conditioned convolutional network to directly generate 3D-consistent images corresponding to the underlying 3D representations. Experiments on several datasets demonstrate that the proposed method obtains results comparable with volumetric rendering in terms of quality and 3D consistency while benefiting from the computational advantage of convolutional networks. The code will be available at: https://github.com/mshahbazi72/NeRF-GAN-Distillation</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Datasets ; Distillation ; Generative adversarial networks ; Image processing ; Image quality ; Rendering ; Representations</subject><ispartof>arXiv.org, 2023-07</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Shahbazi, Mohamad</creatorcontrib><creatorcontrib>Ntavelis, Evangelos</creatorcontrib><creatorcontrib>Tonioni, Alessio</creatorcontrib><creatorcontrib>Collins, Edo</creatorcontrib><creatorcontrib>Danda Pani Paudel</creatorcontrib><creatorcontrib>Danelljan, Martin</creatorcontrib><creatorcontrib>Luc Van Gool</creatorcontrib><title>NeRF-GAN Distillation for Efficient 3D-Aware Generation with Convolutions</title><title>arXiv.org</title><description>Pose-conditioned convolutional generative models struggle with high-quality 3D-consistent image generation from single-view datasets, due to their lack of sufficient 3D priors. Recently, the integration of Neural Radiance Fields (NeRFs) and generative models, such as Generative Adversarial Networks (GANs), has transformed 3D-aware generation from single-view images. NeRF-GANs exploit the strong inductive bias of neural 3D representations and volumetric rendering at the cost of higher computational complexity. This study aims at revisiting pose-conditioned 2D GANs for efficient 3D-aware generation at inference time by distilling 3D knowledge from pretrained NeRF-GANs. We propose a simple and effective method, based on re-using the well-disentangled latent space of a pre-trained NeRF-GAN in a pose-conditioned convolutional network to directly generate 3D-consistent images corresponding to the underlying 3D representations. Experiments on several datasets demonstrate that the proposed method obtains results comparable with volumetric rendering in terms of quality and 3D consistency while benefiting from the computational advantage of convolutional networks. The code will be available at: https://github.com/mshahbazi72/NeRF-GAN-Distillation</description><subject>Datasets</subject><subject>Distillation</subject><subject>Generative adversarial networks</subject><subject>Image processing</subject><subject>Image quality</subject><subject>Rendering</subject><subject>Representations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNir0KwjAYAIMgWLTvEHAOpIm17Vj6p0sH6V6CfMGUkGiS2tdX0QdwOri7FYoY5wnJD4xtUOz9RCllx4ylKY_QuYdLS7qyx7XyQWktgrIGS-twI6W6KjAB85qUi3CAOzDgvseiwg1X1jytnj_C79BaCu0h_nGL9m0zVCdyd_Yxgw_jZGdn3mlkWUGTguZ5yv-7Xu7OO5E</recordid><startdate>20230724</startdate><enddate>20230724</enddate><creator>Shahbazi, Mohamad</creator><creator>Ntavelis, Evangelos</creator><creator>Tonioni, Alessio</creator><creator>Collins, Edo</creator><creator>Danda Pani Paudel</creator><creator>Danelljan, Martin</creator><creator>Luc Van Gool</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230724</creationdate><title>NeRF-GAN Distillation for Efficient 3D-Aware Generation with Convolutions</title><author>Shahbazi, Mohamad ; Ntavelis, Evangelos ; Tonioni, Alessio ; Collins, Edo ; Danda Pani Paudel ; Danelljan, Martin ; Luc Van Gool</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27901908853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Datasets</topic><topic>Distillation</topic><topic>Generative adversarial networks</topic><topic>Image processing</topic><topic>Image quality</topic><topic>Rendering</topic><topic>Representations</topic><toplevel>online_resources</toplevel><creatorcontrib>Shahbazi, Mohamad</creatorcontrib><creatorcontrib>Ntavelis, Evangelos</creatorcontrib><creatorcontrib>Tonioni, Alessio</creatorcontrib><creatorcontrib>Collins, Edo</creatorcontrib><creatorcontrib>Danda Pani Paudel</creatorcontrib><creatorcontrib>Danelljan, Martin</creatorcontrib><creatorcontrib>Luc Van Gool</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shahbazi, Mohamad</au><au>Ntavelis, Evangelos</au><au>Tonioni, Alessio</au><au>Collins, Edo</au><au>Danda Pani Paudel</au><au>Danelljan, Martin</au><au>Luc Van Gool</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>NeRF-GAN Distillation for Efficient 3D-Aware Generation with Convolutions</atitle><jtitle>arXiv.org</jtitle><date>2023-07-24</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Pose-conditioned convolutional generative models struggle with high-quality 3D-consistent image generation from single-view datasets, due to their lack of sufficient 3D priors. Recently, the integration of Neural Radiance Fields (NeRFs) and generative models, such as Generative Adversarial Networks (GANs), has transformed 3D-aware generation from single-view images. NeRF-GANs exploit the strong inductive bias of neural 3D representations and volumetric rendering at the cost of higher computational complexity. This study aims at revisiting pose-conditioned 2D GANs for efficient 3D-aware generation at inference time by distilling 3D knowledge from pretrained NeRF-GANs. We propose a simple and effective method, based on re-using the well-disentangled latent space of a pre-trained NeRF-GAN in a pose-conditioned convolutional network to directly generate 3D-consistent images corresponding to the underlying 3D representations. Experiments on several datasets demonstrate that the proposed method obtains results comparable with volumetric rendering in terms of quality and 3D consistency while benefiting from the computational advantage of convolutional networks. The code will be available at: https://github.com/mshahbazi72/NeRF-GAN-Distillation</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2790190885 |
source | Free E- Journals |
subjects | Datasets Distillation Generative adversarial networks Image processing Image quality Rendering Representations |
title | NeRF-GAN Distillation for Efficient 3D-Aware Generation with Convolutions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A03%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=NeRF-GAN%20Distillation%20for%20Efficient%203D-Aware%20Generation%20with%20Convolutions&rft.jtitle=arXiv.org&rft.au=Shahbazi,%20Mohamad&rft.date=2023-07-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2790190885%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2790190885&rft_id=info:pmid/&rfr_iscdi=true |