NeRF-GAN Distillation for Efficient 3D-Aware Generation with Convolutions

Pose-conditioned convolutional generative models struggle with high-quality 3D-consistent image generation from single-view datasets, due to their lack of sufficient 3D priors. Recently, the integration of Neural Radiance Fields (NeRFs) and generative models, such as Generative Adversarial Networks...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-07
Hauptverfasser: Shahbazi, Mohamad, Ntavelis, Evangelos, Tonioni, Alessio, Collins, Edo, Danda Pani Paudel, Danelljan, Martin, Luc Van Gool
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Shahbazi, Mohamad
Ntavelis, Evangelos
Tonioni, Alessio
Collins, Edo
Danda Pani Paudel
Danelljan, Martin
Luc Van Gool
description Pose-conditioned convolutional generative models struggle with high-quality 3D-consistent image generation from single-view datasets, due to their lack of sufficient 3D priors. Recently, the integration of Neural Radiance Fields (NeRFs) and generative models, such as Generative Adversarial Networks (GANs), has transformed 3D-aware generation from single-view images. NeRF-GANs exploit the strong inductive bias of neural 3D representations and volumetric rendering at the cost of higher computational complexity. This study aims at revisiting pose-conditioned 2D GANs for efficient 3D-aware generation at inference time by distilling 3D knowledge from pretrained NeRF-GANs. We propose a simple and effective method, based on re-using the well-disentangled latent space of a pre-trained NeRF-GAN in a pose-conditioned convolutional network to directly generate 3D-consistent images corresponding to the underlying 3D representations. Experiments on several datasets demonstrate that the proposed method obtains results comparable with volumetric rendering in terms of quality and 3D consistency while benefiting from the computational advantage of convolutional networks. The code will be available at: https://github.com/mshahbazi72/NeRF-GAN-Distillation
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2790190885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2790190885</sourcerecordid><originalsourceid>FETCH-proquest_journals_27901908853</originalsourceid><addsrcrecordid>eNqNir0KwjAYAIMgWLTvEHAOpIm17Vj6p0sH6V6CfMGUkGiS2tdX0QdwOri7FYoY5wnJD4xtUOz9RCllx4ylKY_QuYdLS7qyx7XyQWktgrIGS-twI6W6KjAB85qUi3CAOzDgvseiwg1X1jytnj_C79BaCu0h_nGL9m0zVCdyd_Yxgw_jZGdn3mlkWUGTguZ5yv-7Xu7OO5E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2790190885</pqid></control><display><type>article</type><title>NeRF-GAN Distillation for Efficient 3D-Aware Generation with Convolutions</title><source>Free E- Journals</source><creator>Shahbazi, Mohamad ; Ntavelis, Evangelos ; Tonioni, Alessio ; Collins, Edo ; Danda Pani Paudel ; Danelljan, Martin ; Luc Van Gool</creator><creatorcontrib>Shahbazi, Mohamad ; Ntavelis, Evangelos ; Tonioni, Alessio ; Collins, Edo ; Danda Pani Paudel ; Danelljan, Martin ; Luc Van Gool</creatorcontrib><description>Pose-conditioned convolutional generative models struggle with high-quality 3D-consistent image generation from single-view datasets, due to their lack of sufficient 3D priors. Recently, the integration of Neural Radiance Fields (NeRFs) and generative models, such as Generative Adversarial Networks (GANs), has transformed 3D-aware generation from single-view images. NeRF-GANs exploit the strong inductive bias of neural 3D representations and volumetric rendering at the cost of higher computational complexity. This study aims at revisiting pose-conditioned 2D GANs for efficient 3D-aware generation at inference time by distilling 3D knowledge from pretrained NeRF-GANs. We propose a simple and effective method, based on re-using the well-disentangled latent space of a pre-trained NeRF-GAN in a pose-conditioned convolutional network to directly generate 3D-consistent images corresponding to the underlying 3D representations. Experiments on several datasets demonstrate that the proposed method obtains results comparable with volumetric rendering in terms of quality and 3D consistency while benefiting from the computational advantage of convolutional networks. The code will be available at: https://github.com/mshahbazi72/NeRF-GAN-Distillation</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Datasets ; Distillation ; Generative adversarial networks ; Image processing ; Image quality ; Rendering ; Representations</subject><ispartof>arXiv.org, 2023-07</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Shahbazi, Mohamad</creatorcontrib><creatorcontrib>Ntavelis, Evangelos</creatorcontrib><creatorcontrib>Tonioni, Alessio</creatorcontrib><creatorcontrib>Collins, Edo</creatorcontrib><creatorcontrib>Danda Pani Paudel</creatorcontrib><creatorcontrib>Danelljan, Martin</creatorcontrib><creatorcontrib>Luc Van Gool</creatorcontrib><title>NeRF-GAN Distillation for Efficient 3D-Aware Generation with Convolutions</title><title>arXiv.org</title><description>Pose-conditioned convolutional generative models struggle with high-quality 3D-consistent image generation from single-view datasets, due to their lack of sufficient 3D priors. Recently, the integration of Neural Radiance Fields (NeRFs) and generative models, such as Generative Adversarial Networks (GANs), has transformed 3D-aware generation from single-view images. NeRF-GANs exploit the strong inductive bias of neural 3D representations and volumetric rendering at the cost of higher computational complexity. This study aims at revisiting pose-conditioned 2D GANs for efficient 3D-aware generation at inference time by distilling 3D knowledge from pretrained NeRF-GANs. We propose a simple and effective method, based on re-using the well-disentangled latent space of a pre-trained NeRF-GAN in a pose-conditioned convolutional network to directly generate 3D-consistent images corresponding to the underlying 3D representations. Experiments on several datasets demonstrate that the proposed method obtains results comparable with volumetric rendering in terms of quality and 3D consistency while benefiting from the computational advantage of convolutional networks. The code will be available at: https://github.com/mshahbazi72/NeRF-GAN-Distillation</description><subject>Datasets</subject><subject>Distillation</subject><subject>Generative adversarial networks</subject><subject>Image processing</subject><subject>Image quality</subject><subject>Rendering</subject><subject>Representations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNir0KwjAYAIMgWLTvEHAOpIm17Vj6p0sH6V6CfMGUkGiS2tdX0QdwOri7FYoY5wnJD4xtUOz9RCllx4ylKY_QuYdLS7qyx7XyQWktgrIGS-twI6W6KjAB85qUi3CAOzDgvseiwg1X1jytnj_C79BaCu0h_nGL9m0zVCdyd_Yxgw_jZGdn3mlkWUGTguZ5yv-7Xu7OO5E</recordid><startdate>20230724</startdate><enddate>20230724</enddate><creator>Shahbazi, Mohamad</creator><creator>Ntavelis, Evangelos</creator><creator>Tonioni, Alessio</creator><creator>Collins, Edo</creator><creator>Danda Pani Paudel</creator><creator>Danelljan, Martin</creator><creator>Luc Van Gool</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230724</creationdate><title>NeRF-GAN Distillation for Efficient 3D-Aware Generation with Convolutions</title><author>Shahbazi, Mohamad ; Ntavelis, Evangelos ; Tonioni, Alessio ; Collins, Edo ; Danda Pani Paudel ; Danelljan, Martin ; Luc Van Gool</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27901908853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Datasets</topic><topic>Distillation</topic><topic>Generative adversarial networks</topic><topic>Image processing</topic><topic>Image quality</topic><topic>Rendering</topic><topic>Representations</topic><toplevel>online_resources</toplevel><creatorcontrib>Shahbazi, Mohamad</creatorcontrib><creatorcontrib>Ntavelis, Evangelos</creatorcontrib><creatorcontrib>Tonioni, Alessio</creatorcontrib><creatorcontrib>Collins, Edo</creatorcontrib><creatorcontrib>Danda Pani Paudel</creatorcontrib><creatorcontrib>Danelljan, Martin</creatorcontrib><creatorcontrib>Luc Van Gool</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shahbazi, Mohamad</au><au>Ntavelis, Evangelos</au><au>Tonioni, Alessio</au><au>Collins, Edo</au><au>Danda Pani Paudel</au><au>Danelljan, Martin</au><au>Luc Van Gool</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>NeRF-GAN Distillation for Efficient 3D-Aware Generation with Convolutions</atitle><jtitle>arXiv.org</jtitle><date>2023-07-24</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Pose-conditioned convolutional generative models struggle with high-quality 3D-consistent image generation from single-view datasets, due to their lack of sufficient 3D priors. Recently, the integration of Neural Radiance Fields (NeRFs) and generative models, such as Generative Adversarial Networks (GANs), has transformed 3D-aware generation from single-view images. NeRF-GANs exploit the strong inductive bias of neural 3D representations and volumetric rendering at the cost of higher computational complexity. This study aims at revisiting pose-conditioned 2D GANs for efficient 3D-aware generation at inference time by distilling 3D knowledge from pretrained NeRF-GANs. We propose a simple and effective method, based on re-using the well-disentangled latent space of a pre-trained NeRF-GAN in a pose-conditioned convolutional network to directly generate 3D-consistent images corresponding to the underlying 3D representations. Experiments on several datasets demonstrate that the proposed method obtains results comparable with volumetric rendering in terms of quality and 3D consistency while benefiting from the computational advantage of convolutional networks. The code will be available at: https://github.com/mshahbazi72/NeRF-GAN-Distillation</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2790190885
source Free E- Journals
subjects Datasets
Distillation
Generative adversarial networks
Image processing
Image quality
Rendering
Representations
title NeRF-GAN Distillation for Efficient 3D-Aware Generation with Convolutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A03%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=NeRF-GAN%20Distillation%20for%20Efficient%203D-Aware%20Generation%20with%20Convolutions&rft.jtitle=arXiv.org&rft.au=Shahbazi,%20Mohamad&rft.date=2023-07-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2790190885%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2790190885&rft_id=info:pmid/&rfr_iscdi=true