The Acousto-Thermoelectric Effect
An effect we have termed the acousto-thermoelectric effect is theorized for temperature gradients driven by acoustic modulation. The effect produces a dynamic and spatially varying voltage. Adiabatic acoustic fluctuations in a solid cause temperature variations and temperature gradients that generat...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-03 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An effect we have termed the acousto-thermoelectric effect is theorized for temperature gradients driven by acoustic modulation. The effect produces a dynamic and spatially varying voltage. Adiabatic acoustic fluctuations in a solid cause temperature variations and temperature gradients that generate quasi-static thermoelectric effects correlated with the time and spatial scales of the acoustic fluctuations. This phenomenon is distinctive from the static thermoelectric effect in that the hot spots (heat sources) and cold spots (heat sinks) change locations and vary over short time scales. Predictions are made for a semiconductor material, indium antimonide, showing that the effect is measurable under laboratory conditions. The sample is excited by a resonant acoustic mode with frequency 230 kHz, wavelength of 1.37 cm, and pressure amplitude of 2.23 MPa (rms). The predicted peak voltage between positions where maximum and minimum temperatures occur is 2.6 {\mu}V. The voltage fluctuates with the same frequency as acoustic resonance. |
---|---|
ISSN: | 2331-8422 |