A user-priorities-based strategy for three-phase intelligent recommendation and negotiating agents for cloud services

As the field of information technology expands, there is a huge need for cloud service providers (CSP). CSP's vast solutions and services support Cloud, IoT, Fog, and Edge computing. In today's competitive cloud market, customer satisfaction is critical more than ever. CSP and consumer sat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: Kumar, Rishi, Hassan, Mohd Fadzil, Adnan, Muhamad Hariz M, Shukla, Saurabh, Safdar, Sohail, Qureshi, Muhammad Aasim, Abdel-Aty, Abdel-Haleem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator Kumar, Rishi
Hassan, Mohd Fadzil
Adnan, Muhamad Hariz M
Shukla, Saurabh
Safdar, Sohail
Qureshi, Muhammad Aasim
Abdel-Aty, Abdel-Haleem
description As the field of information technology expands, there is a huge need for cloud service providers (CSP). CSP's vast solutions and services support Cloud, IoT, Fog, and Edge computing. In today's competitive cloud market, customer satisfaction is critical more than ever. CSP and consumer satisfaction with service level agreement (SLA) fulfillment have always been given more attention. As a result of signing SLA and CSP agreements to supply resources in high demand, customers are now experiencing issues with resource delivery. Cloud and heterogeneous environments necessitate an intelligent recommender and negotiation agent model (IRNAM) to handle responsibilities in the current system. The Recommender system recommends CSP as per users' priorities, which eases the filtration process. The negotiation process provided by IRNAM ensures that users' choices are prioritized with maximum jobs to CSP. IRNAM keeps track of the most critical metrics and can reach decisions quickly and for the best possible deal. It uses an analytical concession algorithm that analyzes consumer and CSP choices to find a reliable, secure server with the simplest solution. The negotiation process uses user's and CSP choice metrics, performance factors, evaluation measures, and success factors in the best execution time to decide. IRNAM provides a flexible and valuable way for selecting CSP and negotiating for services on the user's terms while considering CSP satisfaction.
doi_str_mv 10.1109/ACCESS.2023.3254552
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2790137559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10064278</ieee_id><doaj_id>oai_doaj_org_article_a11a7974a522479bb079cd20a8afa349</doaj_id><sourcerecordid>2790137559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-eca95822c9675ef375bf4c490d76fbc98d482be8b625112e64e24443a7d1ea593</originalsourceid><addsrcrecordid>eNpNkU1r3DAQhk1ooSHNL2gPgp690adlHZclbQKBHpKcxVgeO1q81kaSC_n31a5DiC6SZuZ9Zoa3qn4wumGMmpvtbnf7-LjhlIuN4EoqxS-qS84aUwslmi-f3t-q65T2tJy2hJS-rJYtWRLG-hh9iD57THUHCXuScoSM4xsZQiT5JSLWx5eSIX7OOE1-xDmTiC4cDjj3kH2YCcw9mXEM2Zf_PBI4FaUzwU1hKVCM_7zD9L36OsCU8Pr9vqqef98-7e7qh79_7nfbh9pJanKNDoxqOXem0QoHoVU3SCcN7XUzdM60vWx5h23XcMUYx0Yil1IK0D1DUEZcVfcrtw-wt2XHA8Q3G8DbcyDE0ULM3k1ogTHQRktQnEttuo5q43pOoYUBhDyxfq2sYwyvC6Zs92GJcxnfcm0oK9OdO4q1ysWQUsThoyuj9mSXXe2yJ7vsu11F9XNVeUT8pKCN5LoV_wH9-pK2</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2790137559</pqid></control><display><type>article</type><title>A user-priorities-based strategy for three-phase intelligent recommendation and negotiating agents for cloud services</title><source>DOAJ Directory of Open Access Journals</source><source>Free E-Journal (出版社公開部分のみ)</source><source>IEEE Xplore Open Access Journals</source><creator>Kumar, Rishi ; Hassan, Mohd Fadzil ; Adnan, Muhamad Hariz M ; Shukla, Saurabh ; Safdar, Sohail ; Qureshi, Muhammad Aasim ; Abdel-Aty, Abdel-Haleem</creator><creatorcontrib>Kumar, Rishi ; Hassan, Mohd Fadzil ; Adnan, Muhamad Hariz M ; Shukla, Saurabh ; Safdar, Sohail ; Qureshi, Muhammad Aasim ; Abdel-Aty, Abdel-Haleem</creatorcontrib><description>As the field of information technology expands, there is a huge need for cloud service providers (CSP). CSP's vast solutions and services support Cloud, IoT, Fog, and Edge computing. In today's competitive cloud market, customer satisfaction is critical more than ever. CSP and consumer satisfaction with service level agreement (SLA) fulfillment have always been given more attention. As a result of signing SLA and CSP agreements to supply resources in high demand, customers are now experiencing issues with resource delivery. Cloud and heterogeneous environments necessitate an intelligent recommender and negotiation agent model (IRNAM) to handle responsibilities in the current system. The Recommender system recommends CSP as per users' priorities, which eases the filtration process. The negotiation process provided by IRNAM ensures that users' choices are prioritized with maximum jobs to CSP. IRNAM keeps track of the most critical metrics and can reach decisions quickly and for the best possible deal. It uses an analytical concession algorithm that analyzes consumer and CSP choices to find a reliable, secure server with the simplest solution. The negotiation process uses user's and CSP choice metrics, performance factors, evaluation measures, and success factors in the best execution time to decide. IRNAM provides a flexible and valuable way for selecting CSP and negotiating for services on the user's terms while considering CSP satisfaction.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3254552</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Agent ; Algorithms ; Cloud computing ; Cloud management ; Cloud services ; Computational modeling ; Customer satisfaction ; Edge computing ; Industries ; Intelligent System ; Negotiation ; negotiation; recommender system ; Negotiations ; Priorities ; Quality of service ; Recommender system ; Recommender systems ; Reliability ; Service level agreements ; SLA ; SLA Life cycle</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-eca95822c9675ef375bf4c490d76fbc98d482be8b625112e64e24443a7d1ea593</citedby><cites>FETCH-LOGICAL-c409t-eca95822c9675ef375bf4c490d76fbc98d482be8b625112e64e24443a7d1ea593</cites><orcidid>0000-0002-1451-2686 ; 0000-0001-9912-6890 ; 0000-0002-6763-2569 ; 0000-0002-3335-373X ; 0000-0002-7001-8623</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10064278$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Kumar, Rishi</creatorcontrib><creatorcontrib>Hassan, Mohd Fadzil</creatorcontrib><creatorcontrib>Adnan, Muhamad Hariz M</creatorcontrib><creatorcontrib>Shukla, Saurabh</creatorcontrib><creatorcontrib>Safdar, Sohail</creatorcontrib><creatorcontrib>Qureshi, Muhammad Aasim</creatorcontrib><creatorcontrib>Abdel-Aty, Abdel-Haleem</creatorcontrib><title>A user-priorities-based strategy for three-phase intelligent recommendation and negotiating agents for cloud services</title><title>IEEE access</title><addtitle>Access</addtitle><description>As the field of information technology expands, there is a huge need for cloud service providers (CSP). CSP's vast solutions and services support Cloud, IoT, Fog, and Edge computing. In today's competitive cloud market, customer satisfaction is critical more than ever. CSP and consumer satisfaction with service level agreement (SLA) fulfillment have always been given more attention. As a result of signing SLA and CSP agreements to supply resources in high demand, customers are now experiencing issues with resource delivery. Cloud and heterogeneous environments necessitate an intelligent recommender and negotiation agent model (IRNAM) to handle responsibilities in the current system. The Recommender system recommends CSP as per users' priorities, which eases the filtration process. The negotiation process provided by IRNAM ensures that users' choices are prioritized with maximum jobs to CSP. IRNAM keeps track of the most critical metrics and can reach decisions quickly and for the best possible deal. It uses an analytical concession algorithm that analyzes consumer and CSP choices to find a reliable, secure server with the simplest solution. The negotiation process uses user's and CSP choice metrics, performance factors, evaluation measures, and success factors in the best execution time to decide. IRNAM provides a flexible and valuable way for selecting CSP and negotiating for services on the user's terms while considering CSP satisfaction.</description><subject>Agent</subject><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Cloud management</subject><subject>Cloud services</subject><subject>Computational modeling</subject><subject>Customer satisfaction</subject><subject>Edge computing</subject><subject>Industries</subject><subject>Intelligent System</subject><subject>Negotiation</subject><subject>negotiation; recommender system</subject><subject>Negotiations</subject><subject>Priorities</subject><subject>Quality of service</subject><subject>Recommender system</subject><subject>Recommender systems</subject><subject>Reliability</subject><subject>Service level agreements</subject><subject>SLA</subject><subject>SLA Life cycle</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1r3DAQhk1ooSHNL2gPgp690adlHZclbQKBHpKcxVgeO1q81kaSC_n31a5DiC6SZuZ9Zoa3qn4wumGMmpvtbnf7-LjhlIuN4EoqxS-qS84aUwslmi-f3t-q65T2tJy2hJS-rJYtWRLG-hh9iD57THUHCXuScoSM4xsZQiT5JSLWx5eSIX7OOE1-xDmTiC4cDjj3kH2YCcw9mXEM2Zf_PBI4FaUzwU1hKVCM_7zD9L36OsCU8Pr9vqqef98-7e7qh79_7nfbh9pJanKNDoxqOXem0QoHoVU3SCcN7XUzdM60vWx5h23XcMUYx0Yil1IK0D1DUEZcVfcrtw-wt2XHA8Q3G8DbcyDE0ULM3k1ogTHQRktQnEttuo5q43pOoYUBhDyxfq2sYwyvC6Zs92GJcxnfcm0oK9OdO4q1ysWQUsThoyuj9mSXXe2yJ7vsu11F9XNVeUT8pKCN5LoV_wH9-pK2</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Kumar, Rishi</creator><creator>Hassan, Mohd Fadzil</creator><creator>Adnan, Muhamad Hariz M</creator><creator>Shukla, Saurabh</creator><creator>Safdar, Sohail</creator><creator>Qureshi, Muhammad Aasim</creator><creator>Abdel-Aty, Abdel-Haleem</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1451-2686</orcidid><orcidid>https://orcid.org/0000-0001-9912-6890</orcidid><orcidid>https://orcid.org/0000-0002-6763-2569</orcidid><orcidid>https://orcid.org/0000-0002-3335-373X</orcidid><orcidid>https://orcid.org/0000-0002-7001-8623</orcidid></search><sort><creationdate>20230101</creationdate><title>A user-priorities-based strategy for three-phase intelligent recommendation and negotiating agents for cloud services</title><author>Kumar, Rishi ; Hassan, Mohd Fadzil ; Adnan, Muhamad Hariz M ; Shukla, Saurabh ; Safdar, Sohail ; Qureshi, Muhammad Aasim ; Abdel-Aty, Abdel-Haleem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-eca95822c9675ef375bf4c490d76fbc98d482be8b625112e64e24443a7d1ea593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agent</topic><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Cloud management</topic><topic>Cloud services</topic><topic>Computational modeling</topic><topic>Customer satisfaction</topic><topic>Edge computing</topic><topic>Industries</topic><topic>Intelligent System</topic><topic>Negotiation</topic><topic>negotiation; recommender system</topic><topic>Negotiations</topic><topic>Priorities</topic><topic>Quality of service</topic><topic>Recommender system</topic><topic>Recommender systems</topic><topic>Reliability</topic><topic>Service level agreements</topic><topic>SLA</topic><topic>SLA Life cycle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Rishi</creatorcontrib><creatorcontrib>Hassan, Mohd Fadzil</creatorcontrib><creatorcontrib>Adnan, Muhamad Hariz M</creatorcontrib><creatorcontrib>Shukla, Saurabh</creatorcontrib><creatorcontrib>Safdar, Sohail</creatorcontrib><creatorcontrib>Qureshi, Muhammad Aasim</creatorcontrib><creatorcontrib>Abdel-Aty, Abdel-Haleem</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Rishi</au><au>Hassan, Mohd Fadzil</au><au>Adnan, Muhamad Hariz M</au><au>Shukla, Saurabh</au><au>Safdar, Sohail</au><au>Qureshi, Muhammad Aasim</au><au>Abdel-Aty, Abdel-Haleem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A user-priorities-based strategy for three-phase intelligent recommendation and negotiating agents for cloud services</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>As the field of information technology expands, there is a huge need for cloud service providers (CSP). CSP's vast solutions and services support Cloud, IoT, Fog, and Edge computing. In today's competitive cloud market, customer satisfaction is critical more than ever. CSP and consumer satisfaction with service level agreement (SLA) fulfillment have always been given more attention. As a result of signing SLA and CSP agreements to supply resources in high demand, customers are now experiencing issues with resource delivery. Cloud and heterogeneous environments necessitate an intelligent recommender and negotiation agent model (IRNAM) to handle responsibilities in the current system. The Recommender system recommends CSP as per users' priorities, which eases the filtration process. The negotiation process provided by IRNAM ensures that users' choices are prioritized with maximum jobs to CSP. IRNAM keeps track of the most critical metrics and can reach decisions quickly and for the best possible deal. It uses an analytical concession algorithm that analyzes consumer and CSP choices to find a reliable, secure server with the simplest solution. The negotiation process uses user's and CSP choice metrics, performance factors, evaluation measures, and success factors in the best execution time to decide. IRNAM provides a flexible and valuable way for selecting CSP and negotiating for services on the user's terms while considering CSP satisfaction.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3254552</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1451-2686</orcidid><orcidid>https://orcid.org/0000-0001-9912-6890</orcidid><orcidid>https://orcid.org/0000-0002-6763-2569</orcidid><orcidid>https://orcid.org/0000-0002-3335-373X</orcidid><orcidid>https://orcid.org/0000-0002-7001-8623</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2790137559
source DOAJ Directory of Open Access Journals; Free E-Journal (出版社公開部分のみ); IEEE Xplore Open Access Journals
subjects Agent
Algorithms
Cloud computing
Cloud management
Cloud services
Computational modeling
Customer satisfaction
Edge computing
Industries
Intelligent System
Negotiation
negotiation
recommender system
Negotiations
Priorities
Quality of service
Recommender system
Recommender systems
Reliability
Service level agreements
SLA
SLA Life cycle
title A user-priorities-based strategy for three-phase intelligent recommendation and negotiating agents for cloud services
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A53%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20user-priorities-based%20strategy%20for%20three-phase%20intelligent%20recommendation%20and%20negotiating%20agents%20for%20cloud%20services&rft.jtitle=IEEE%20access&rft.au=Kumar,%20Rishi&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3254552&rft_dat=%3Cproquest_doaj_%3E2790137559%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2790137559&rft_id=info:pmid/&rft_ieee_id=10064278&rft_doaj_id=oai_doaj_org_article_a11a7974a522479bb079cd20a8afa349&rfr_iscdi=true