A user-priorities-based strategy for three-phase intelligent recommendation and negotiating agents for cloud services
As the field of information technology expands, there is a huge need for cloud service providers (CSP). CSP's vast solutions and services support Cloud, IoT, Fog, and Edge computing. In today's competitive cloud market, customer satisfaction is critical more than ever. CSP and consumer sat...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Kumar, Rishi Hassan, Mohd Fadzil Adnan, Muhamad Hariz M Shukla, Saurabh Safdar, Sohail Qureshi, Muhammad Aasim Abdel-Aty, Abdel-Haleem |
description | As the field of information technology expands, there is a huge need for cloud service providers (CSP). CSP's vast solutions and services support Cloud, IoT, Fog, and Edge computing. In today's competitive cloud market, customer satisfaction is critical more than ever. CSP and consumer satisfaction with service level agreement (SLA) fulfillment have always been given more attention. As a result of signing SLA and CSP agreements to supply resources in high demand, customers are now experiencing issues with resource delivery. Cloud and heterogeneous environments necessitate an intelligent recommender and negotiation agent model (IRNAM) to handle responsibilities in the current system. The Recommender system recommends CSP as per users' priorities, which eases the filtration process. The negotiation process provided by IRNAM ensures that users' choices are prioritized with maximum jobs to CSP. IRNAM keeps track of the most critical metrics and can reach decisions quickly and for the best possible deal. It uses an analytical concession algorithm that analyzes consumer and CSP choices to find a reliable, secure server with the simplest solution. The negotiation process uses user's and CSP choice metrics, performance factors, evaluation measures, and success factors in the best execution time to decide. IRNAM provides a flexible and valuable way for selecting CSP and negotiating for services on the user's terms while considering CSP satisfaction. |
doi_str_mv | 10.1109/ACCESS.2023.3254552 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2790137559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10064278</ieee_id><doaj_id>oai_doaj_org_article_a11a7974a522479bb079cd20a8afa349</doaj_id><sourcerecordid>2790137559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-eca95822c9675ef375bf4c490d76fbc98d482be8b625112e64e24443a7d1ea593</originalsourceid><addsrcrecordid>eNpNkU1r3DAQhk1ooSHNL2gPgp690adlHZclbQKBHpKcxVgeO1q81kaSC_n31a5DiC6SZuZ9Zoa3qn4wumGMmpvtbnf7-LjhlIuN4EoqxS-qS84aUwslmi-f3t-q65T2tJy2hJS-rJYtWRLG-hh9iD57THUHCXuScoSM4xsZQiT5JSLWx5eSIX7OOE1-xDmTiC4cDjj3kH2YCcw9mXEM2Zf_PBI4FaUzwU1hKVCM_7zD9L36OsCU8Pr9vqqef98-7e7qh79_7nfbh9pJanKNDoxqOXem0QoHoVU3SCcN7XUzdM60vWx5h23XcMUYx0Yil1IK0D1DUEZcVfcrtw-wt2XHA8Q3G8DbcyDE0ULM3k1ogTHQRktQnEttuo5q43pOoYUBhDyxfq2sYwyvC6Zs92GJcxnfcm0oK9OdO4q1ysWQUsThoyuj9mSXXe2yJ7vsu11F9XNVeUT8pKCN5LoV_wH9-pK2</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2790137559</pqid></control><display><type>article</type><title>A user-priorities-based strategy for three-phase intelligent recommendation and negotiating agents for cloud services</title><source>DOAJ Directory of Open Access Journals</source><source>Free E-Journal (出版社公開部分のみ)</source><source>IEEE Xplore Open Access Journals</source><creator>Kumar, Rishi ; Hassan, Mohd Fadzil ; Adnan, Muhamad Hariz M ; Shukla, Saurabh ; Safdar, Sohail ; Qureshi, Muhammad Aasim ; Abdel-Aty, Abdel-Haleem</creator><creatorcontrib>Kumar, Rishi ; Hassan, Mohd Fadzil ; Adnan, Muhamad Hariz M ; Shukla, Saurabh ; Safdar, Sohail ; Qureshi, Muhammad Aasim ; Abdel-Aty, Abdel-Haleem</creatorcontrib><description>As the field of information technology expands, there is a huge need for cloud service providers (CSP). CSP's vast solutions and services support Cloud, IoT, Fog, and Edge computing. In today's competitive cloud market, customer satisfaction is critical more than ever. CSP and consumer satisfaction with service level agreement (SLA) fulfillment have always been given more attention. As a result of signing SLA and CSP agreements to supply resources in high demand, customers are now experiencing issues with resource delivery. Cloud and heterogeneous environments necessitate an intelligent recommender and negotiation agent model (IRNAM) to handle responsibilities in the current system. The Recommender system recommends CSP as per users' priorities, which eases the filtration process. The negotiation process provided by IRNAM ensures that users' choices are prioritized with maximum jobs to CSP. IRNAM keeps track of the most critical metrics and can reach decisions quickly and for the best possible deal. It uses an analytical concession algorithm that analyzes consumer and CSP choices to find a reliable, secure server with the simplest solution. The negotiation process uses user's and CSP choice metrics, performance factors, evaluation measures, and success factors in the best execution time to decide. IRNAM provides a flexible and valuable way for selecting CSP and negotiating for services on the user's terms while considering CSP satisfaction.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3254552</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Agent ; Algorithms ; Cloud computing ; Cloud management ; Cloud services ; Computational modeling ; Customer satisfaction ; Edge computing ; Industries ; Intelligent System ; Negotiation ; negotiation; recommender system ; Negotiations ; Priorities ; Quality of service ; Recommender system ; Recommender systems ; Reliability ; Service level agreements ; SLA ; SLA Life cycle</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-eca95822c9675ef375bf4c490d76fbc98d482be8b625112e64e24443a7d1ea593</citedby><cites>FETCH-LOGICAL-c409t-eca95822c9675ef375bf4c490d76fbc98d482be8b625112e64e24443a7d1ea593</cites><orcidid>0000-0002-1451-2686 ; 0000-0001-9912-6890 ; 0000-0002-6763-2569 ; 0000-0002-3335-373X ; 0000-0002-7001-8623</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10064278$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Kumar, Rishi</creatorcontrib><creatorcontrib>Hassan, Mohd Fadzil</creatorcontrib><creatorcontrib>Adnan, Muhamad Hariz M</creatorcontrib><creatorcontrib>Shukla, Saurabh</creatorcontrib><creatorcontrib>Safdar, Sohail</creatorcontrib><creatorcontrib>Qureshi, Muhammad Aasim</creatorcontrib><creatorcontrib>Abdel-Aty, Abdel-Haleem</creatorcontrib><title>A user-priorities-based strategy for three-phase intelligent recommendation and negotiating agents for cloud services</title><title>IEEE access</title><addtitle>Access</addtitle><description>As the field of information technology expands, there is a huge need for cloud service providers (CSP). CSP's vast solutions and services support Cloud, IoT, Fog, and Edge computing. In today's competitive cloud market, customer satisfaction is critical more than ever. CSP and consumer satisfaction with service level agreement (SLA) fulfillment have always been given more attention. As a result of signing SLA and CSP agreements to supply resources in high demand, customers are now experiencing issues with resource delivery. Cloud and heterogeneous environments necessitate an intelligent recommender and negotiation agent model (IRNAM) to handle responsibilities in the current system. The Recommender system recommends CSP as per users' priorities, which eases the filtration process. The negotiation process provided by IRNAM ensures that users' choices are prioritized with maximum jobs to CSP. IRNAM keeps track of the most critical metrics and can reach decisions quickly and for the best possible deal. It uses an analytical concession algorithm that analyzes consumer and CSP choices to find a reliable, secure server with the simplest solution. The negotiation process uses user's and CSP choice metrics, performance factors, evaluation measures, and success factors in the best execution time to decide. IRNAM provides a flexible and valuable way for selecting CSP and negotiating for services on the user's terms while considering CSP satisfaction.</description><subject>Agent</subject><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Cloud management</subject><subject>Cloud services</subject><subject>Computational modeling</subject><subject>Customer satisfaction</subject><subject>Edge computing</subject><subject>Industries</subject><subject>Intelligent System</subject><subject>Negotiation</subject><subject>negotiation; recommender system</subject><subject>Negotiations</subject><subject>Priorities</subject><subject>Quality of service</subject><subject>Recommender system</subject><subject>Recommender systems</subject><subject>Reliability</subject><subject>Service level agreements</subject><subject>SLA</subject><subject>SLA Life cycle</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1r3DAQhk1ooSHNL2gPgp690adlHZclbQKBHpKcxVgeO1q81kaSC_n31a5DiC6SZuZ9Zoa3qn4wumGMmpvtbnf7-LjhlIuN4EoqxS-qS84aUwslmi-f3t-q65T2tJy2hJS-rJYtWRLG-hh9iD57THUHCXuScoSM4xsZQiT5JSLWx5eSIX7OOE1-xDmTiC4cDjj3kH2YCcw9mXEM2Zf_PBI4FaUzwU1hKVCM_7zD9L36OsCU8Pr9vqqef98-7e7qh79_7nfbh9pJanKNDoxqOXem0QoHoVU3SCcN7XUzdM60vWx5h23XcMUYx0Yil1IK0D1DUEZcVfcrtw-wt2XHA8Q3G8DbcyDE0ULM3k1ogTHQRktQnEttuo5q43pOoYUBhDyxfq2sYwyvC6Zs92GJcxnfcm0oK9OdO4q1ysWQUsThoyuj9mSXXe2yJ7vsu11F9XNVeUT8pKCN5LoV_wH9-pK2</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Kumar, Rishi</creator><creator>Hassan, Mohd Fadzil</creator><creator>Adnan, Muhamad Hariz M</creator><creator>Shukla, Saurabh</creator><creator>Safdar, Sohail</creator><creator>Qureshi, Muhammad Aasim</creator><creator>Abdel-Aty, Abdel-Haleem</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1451-2686</orcidid><orcidid>https://orcid.org/0000-0001-9912-6890</orcidid><orcidid>https://orcid.org/0000-0002-6763-2569</orcidid><orcidid>https://orcid.org/0000-0002-3335-373X</orcidid><orcidid>https://orcid.org/0000-0002-7001-8623</orcidid></search><sort><creationdate>20230101</creationdate><title>A user-priorities-based strategy for three-phase intelligent recommendation and negotiating agents for cloud services</title><author>Kumar, Rishi ; Hassan, Mohd Fadzil ; Adnan, Muhamad Hariz M ; Shukla, Saurabh ; Safdar, Sohail ; Qureshi, Muhammad Aasim ; Abdel-Aty, Abdel-Haleem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-eca95822c9675ef375bf4c490d76fbc98d482be8b625112e64e24443a7d1ea593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agent</topic><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Cloud management</topic><topic>Cloud services</topic><topic>Computational modeling</topic><topic>Customer satisfaction</topic><topic>Edge computing</topic><topic>Industries</topic><topic>Intelligent System</topic><topic>Negotiation</topic><topic>negotiation; recommender system</topic><topic>Negotiations</topic><topic>Priorities</topic><topic>Quality of service</topic><topic>Recommender system</topic><topic>Recommender systems</topic><topic>Reliability</topic><topic>Service level agreements</topic><topic>SLA</topic><topic>SLA Life cycle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Rishi</creatorcontrib><creatorcontrib>Hassan, Mohd Fadzil</creatorcontrib><creatorcontrib>Adnan, Muhamad Hariz M</creatorcontrib><creatorcontrib>Shukla, Saurabh</creatorcontrib><creatorcontrib>Safdar, Sohail</creatorcontrib><creatorcontrib>Qureshi, Muhammad Aasim</creatorcontrib><creatorcontrib>Abdel-Aty, Abdel-Haleem</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Rishi</au><au>Hassan, Mohd Fadzil</au><au>Adnan, Muhamad Hariz M</au><au>Shukla, Saurabh</au><au>Safdar, Sohail</au><au>Qureshi, Muhammad Aasim</au><au>Abdel-Aty, Abdel-Haleem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A user-priorities-based strategy for three-phase intelligent recommendation and negotiating agents for cloud services</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>As the field of information technology expands, there is a huge need for cloud service providers (CSP). CSP's vast solutions and services support Cloud, IoT, Fog, and Edge computing. In today's competitive cloud market, customer satisfaction is critical more than ever. CSP and consumer satisfaction with service level agreement (SLA) fulfillment have always been given more attention. As a result of signing SLA and CSP agreements to supply resources in high demand, customers are now experiencing issues with resource delivery. Cloud and heterogeneous environments necessitate an intelligent recommender and negotiation agent model (IRNAM) to handle responsibilities in the current system. The Recommender system recommends CSP as per users' priorities, which eases the filtration process. The negotiation process provided by IRNAM ensures that users' choices are prioritized with maximum jobs to CSP. IRNAM keeps track of the most critical metrics and can reach decisions quickly and for the best possible deal. It uses an analytical concession algorithm that analyzes consumer and CSP choices to find a reliable, secure server with the simplest solution. The negotiation process uses user's and CSP choice metrics, performance factors, evaluation measures, and success factors in the best execution time to decide. IRNAM provides a flexible and valuable way for selecting CSP and negotiating for services on the user's terms while considering CSP satisfaction.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3254552</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1451-2686</orcidid><orcidid>https://orcid.org/0000-0001-9912-6890</orcidid><orcidid>https://orcid.org/0000-0002-6763-2569</orcidid><orcidid>https://orcid.org/0000-0002-3335-373X</orcidid><orcidid>https://orcid.org/0000-0002-7001-8623</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2790137559 |
source | DOAJ Directory of Open Access Journals; Free E-Journal (出版社公開部分のみ); IEEE Xplore Open Access Journals |
subjects | Agent Algorithms Cloud computing Cloud management Cloud services Computational modeling Customer satisfaction Edge computing Industries Intelligent System Negotiation negotiation recommender system Negotiations Priorities Quality of service Recommender system Recommender systems Reliability Service level agreements SLA SLA Life cycle |
title | A user-priorities-based strategy for three-phase intelligent recommendation and negotiating agents for cloud services |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A53%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20user-priorities-based%20strategy%20for%20three-phase%20intelligent%20recommendation%20and%20negotiating%20agents%20for%20cloud%20services&rft.jtitle=IEEE%20access&rft.au=Kumar,%20Rishi&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3254552&rft_dat=%3Cproquest_doaj_%3E2790137559%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2790137559&rft_id=info:pmid/&rft_ieee_id=10064278&rft_doaj_id=oai_doaj_org_article_a11a7974a522479bb079cd20a8afa349&rfr_iscdi=true |