Memristor-Based Cryogenic Programmable DC Sources for Scalable In Situ Quantum-Dot Control
Current quantum systems based on spin qubits are controlled by classical electronics located outside the cryostat. This approach creates a major wiring bottleneck, which is one of the main roadblocks toward scalable quantum computers. Thus, we propose a scalable memristor-based programmable dc sourc...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2023-04, Vol.70 (4), p.1989-1995 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1995 |
---|---|
container_issue | 4 |
container_start_page | 1989 |
container_title | IEEE transactions on electron devices |
container_volume | 70 |
creator | Mouny, Pierre-Antoine Beilliard, Yann Graveline, Sebastien Roux, Marc-Antoine Mesoudy, Abdelouadoud El Dawant, Raphael Gliech, Pierre Ecoffey, Serge Alibart, Fabien Pioro-Ladriere, Michel Drouin, Dominique |
description | Current quantum systems based on spin qubits are controlled by classical electronics located outside the cryostat. This approach creates a major wiring bottleneck, which is one of the main roadblocks toward scalable quantum computers. Thus, we propose a scalable memristor-based programmable dc source that can perform biasing of quantum dots (QDs) inside the cryostat. This novel cryogenic approach would enable to control the applied voltage on the electrostatic gates by programming the resistance of the memristors, thus storing in the latter the appropriate conditions to form the QDs. In this study, we first demonstrate multilevel resistance programming of TiO2 memristors at 4.2 K, an essential feature to achieve voltage tunability of the memristor-based dc source. We then report hardware-based simulations of the electrical performance of the proposed dc source. A cryogenic TiO2 memristor model fit on our experimental data at 4.2 K was used to show a 1 V voltage range and 100 \mu \text{V} resolution in situ memristor-based dc source. Finally, we simulate the biasing of double QDs (DQDs), enabling 120 s stability diagrams. This demonstration is a first step toward advanced cryogenic applications for resistive memories, such as cryogenic control electronics for quantum computers. |
doi_str_mv | 10.1109/TED.2023.3244133 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_2790136280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10048765</ieee_id><sourcerecordid>2790136280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-81772424b70a8775cb30532ef9591cf579c358aa909747a20343f7557a3d9b8e3</originalsourceid><addsrcrecordid>eNpNkL1PwzAQxS0EEuVjZ2CwxMSQYvvs2B5LypdUBKiwsFhu6pRUSQx2gsR_j0sRYjrd6fee7j2ETigZU0r0xfPVdMwIgzEwzinADhpRIWSmc57vohEhVGUaFOyjgxjXac05ZyP0eu_aUMfeh-zSRrfERfjyK9fVJX4MfhVs29pF4_C0wHM_hNJFXPmA56Vtfu53HZ7X_YCfBtv1Q5tNfY8L3_XBN0dor7JNdMe_8xC9XF89F7fZ7OHmrpjMshJy1WeKSsk44wtJrJJSlAsgApirtNC0rITUJQhlrSZacmkZAQ6VTNEsLPVCOThE51vfN9uY91C3NnwZb2tzO5mZzY3wZAggPmliz7bse_Afg4u9WadUXXrPMKkJhZwpkiiypcrgYwyu-rOlxGzaNqlts2nb_LadJKdbSe2c-4cTrmQu4Bvoang_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2790136280</pqid></control><display><type>article</type><title>Memristor-Based Cryogenic Programmable DC Sources for Scalable In Situ Quantum-Dot Control</title><source>IEEE Electronic Library (IEL)</source><creator>Mouny, Pierre-Antoine ; Beilliard, Yann ; Graveline, Sebastien ; Roux, Marc-Antoine ; Mesoudy, Abdelouadoud El ; Dawant, Raphael ; Gliech, Pierre ; Ecoffey, Serge ; Alibart, Fabien ; Pioro-Ladriere, Michel ; Drouin, Dominique</creator><creatorcontrib>Mouny, Pierre-Antoine ; Beilliard, Yann ; Graveline, Sebastien ; Roux, Marc-Antoine ; Mesoudy, Abdelouadoud El ; Dawant, Raphael ; Gliech, Pierre ; Ecoffey, Serge ; Alibart, Fabien ; Pioro-Ladriere, Michel ; Drouin, Dominique</creatorcontrib><description>Current quantum systems based on spin qubits are controlled by classical electronics located outside the cryostat. This approach creates a major wiring bottleneck, which is one of the main roadblocks toward scalable quantum computers. Thus, we propose a scalable memristor-based programmable dc source that can perform biasing of quantum dots (QDs) inside the cryostat. This novel cryogenic approach would enable to control the applied voltage on the electrostatic gates by programming the resistance of the memristors, thus storing in the latter the appropriate conditions to form the QDs. In this study, we first demonstrate multilevel resistance programming of TiO2 memristors at 4.2 K, an essential feature to achieve voltage tunability of the memristor-based dc source. We then report hardware-based simulations of the electrical performance of the proposed dc source. A cryogenic TiO2 memristor model fit on our experimental data at 4.2 K was used to show a 1 V voltage range and 100 <inline-formula> <tex-math notation="LaTeX">\mu \text{V} </tex-math></inline-formula> resolution in situ memristor-based dc source. Finally, we simulate the biasing of double QDs (DQDs), enabling 120 s stability diagrams. This demonstration is a first step toward advanced cryogenic applications for resistive memories, such as cryogenic control electronics for quantum computers.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2023.3244133</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cryogenic electronics ; Cryogenic engineering ; Cryogenics ; Electric potential ; Electron spin ; Electronics ; Engineering Sciences ; Logic gates ; Memristors ; Power dissipation ; Quantum computers ; Quantum computing ; Quantum dots ; quantum dots (QDs) ; Qubit ; Qubits (quantum computing) ; Resistance ; Titanium dioxide ; Voltage ; Wiring</subject><ispartof>IEEE transactions on electron devices, 2023-04, Vol.70 (4), p.1989-1995</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-81772424b70a8775cb30532ef9591cf579c358aa909747a20343f7557a3d9b8e3</citedby><cites>FETCH-LOGICAL-c368t-81772424b70a8775cb30532ef9591cf579c358aa909747a20343f7557a3d9b8e3</cites><orcidid>0000-0002-7736-8116 ; 0000-0003-2156-967X ; 0000-0001-7976-9661 ; 0000-0002-3002-501X ; 0000-0001-9762-5557 ; 0000-0003-4941-8347 ; 0000-0001-9115-0052 ; 0000-0002-3492-8654 ; 0000-0002-9591-220X ; 0000-0003-0311-8840</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10048765$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04053335$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mouny, Pierre-Antoine</creatorcontrib><creatorcontrib>Beilliard, Yann</creatorcontrib><creatorcontrib>Graveline, Sebastien</creatorcontrib><creatorcontrib>Roux, Marc-Antoine</creatorcontrib><creatorcontrib>Mesoudy, Abdelouadoud El</creatorcontrib><creatorcontrib>Dawant, Raphael</creatorcontrib><creatorcontrib>Gliech, Pierre</creatorcontrib><creatorcontrib>Ecoffey, Serge</creatorcontrib><creatorcontrib>Alibart, Fabien</creatorcontrib><creatorcontrib>Pioro-Ladriere, Michel</creatorcontrib><creatorcontrib>Drouin, Dominique</creatorcontrib><title>Memristor-Based Cryogenic Programmable DC Sources for Scalable In Situ Quantum-Dot Control</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Current quantum systems based on spin qubits are controlled by classical electronics located outside the cryostat. This approach creates a major wiring bottleneck, which is one of the main roadblocks toward scalable quantum computers. Thus, we propose a scalable memristor-based programmable dc source that can perform biasing of quantum dots (QDs) inside the cryostat. This novel cryogenic approach would enable to control the applied voltage on the electrostatic gates by programming the resistance of the memristors, thus storing in the latter the appropriate conditions to form the QDs. In this study, we first demonstrate multilevel resistance programming of TiO2 memristors at 4.2 K, an essential feature to achieve voltage tunability of the memristor-based dc source. We then report hardware-based simulations of the electrical performance of the proposed dc source. A cryogenic TiO2 memristor model fit on our experimental data at 4.2 K was used to show a 1 V voltage range and 100 <inline-formula> <tex-math notation="LaTeX">\mu \text{V} </tex-math></inline-formula> resolution in situ memristor-based dc source. Finally, we simulate the biasing of double QDs (DQDs), enabling 120 s stability diagrams. This demonstration is a first step toward advanced cryogenic applications for resistive memories, such as cryogenic control electronics for quantum computers.</description><subject>Cryogenic electronics</subject><subject>Cryogenic engineering</subject><subject>Cryogenics</subject><subject>Electric potential</subject><subject>Electron spin</subject><subject>Electronics</subject><subject>Engineering Sciences</subject><subject>Logic gates</subject><subject>Memristors</subject><subject>Power dissipation</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Quantum dots</subject><subject>quantum dots (QDs)</subject><subject>Qubit</subject><subject>Qubits (quantum computing)</subject><subject>Resistance</subject><subject>Titanium dioxide</subject><subject>Voltage</subject><subject>Wiring</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkL1PwzAQxS0EEuVjZ2CwxMSQYvvs2B5LypdUBKiwsFhu6pRUSQx2gsR_j0sRYjrd6fee7j2ETigZU0r0xfPVdMwIgzEwzinADhpRIWSmc57vohEhVGUaFOyjgxjXac05ZyP0eu_aUMfeh-zSRrfERfjyK9fVJX4MfhVs29pF4_C0wHM_hNJFXPmA56Vtfu53HZ7X_YCfBtv1Q5tNfY8L3_XBN0dor7JNdMe_8xC9XF89F7fZ7OHmrpjMshJy1WeKSsk44wtJrJJSlAsgApirtNC0rITUJQhlrSZacmkZAQ6VTNEsLPVCOThE51vfN9uY91C3NnwZb2tzO5mZzY3wZAggPmliz7bse_Afg4u9WadUXXrPMKkJhZwpkiiypcrgYwyu-rOlxGzaNqlts2nb_LadJKdbSe2c-4cTrmQu4Bvoang_</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Mouny, Pierre-Antoine</creator><creator>Beilliard, Yann</creator><creator>Graveline, Sebastien</creator><creator>Roux, Marc-Antoine</creator><creator>Mesoudy, Abdelouadoud El</creator><creator>Dawant, Raphael</creator><creator>Gliech, Pierre</creator><creator>Ecoffey, Serge</creator><creator>Alibart, Fabien</creator><creator>Pioro-Ladriere, Michel</creator><creator>Drouin, Dominique</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7736-8116</orcidid><orcidid>https://orcid.org/0000-0003-2156-967X</orcidid><orcidid>https://orcid.org/0000-0001-7976-9661</orcidid><orcidid>https://orcid.org/0000-0002-3002-501X</orcidid><orcidid>https://orcid.org/0000-0001-9762-5557</orcidid><orcidid>https://orcid.org/0000-0003-4941-8347</orcidid><orcidid>https://orcid.org/0000-0001-9115-0052</orcidid><orcidid>https://orcid.org/0000-0002-3492-8654</orcidid><orcidid>https://orcid.org/0000-0002-9591-220X</orcidid><orcidid>https://orcid.org/0000-0003-0311-8840</orcidid></search><sort><creationdate>20230401</creationdate><title>Memristor-Based Cryogenic Programmable DC Sources for Scalable In Situ Quantum-Dot Control</title><author>Mouny, Pierre-Antoine ; Beilliard, Yann ; Graveline, Sebastien ; Roux, Marc-Antoine ; Mesoudy, Abdelouadoud El ; Dawant, Raphael ; Gliech, Pierre ; Ecoffey, Serge ; Alibart, Fabien ; Pioro-Ladriere, Michel ; Drouin, Dominique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-81772424b70a8775cb30532ef9591cf579c358aa909747a20343f7557a3d9b8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cryogenic electronics</topic><topic>Cryogenic engineering</topic><topic>Cryogenics</topic><topic>Electric potential</topic><topic>Electron spin</topic><topic>Electronics</topic><topic>Engineering Sciences</topic><topic>Logic gates</topic><topic>Memristors</topic><topic>Power dissipation</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Quantum dots</topic><topic>quantum dots (QDs)</topic><topic>Qubit</topic><topic>Qubits (quantum computing)</topic><topic>Resistance</topic><topic>Titanium dioxide</topic><topic>Voltage</topic><topic>Wiring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mouny, Pierre-Antoine</creatorcontrib><creatorcontrib>Beilliard, Yann</creatorcontrib><creatorcontrib>Graveline, Sebastien</creatorcontrib><creatorcontrib>Roux, Marc-Antoine</creatorcontrib><creatorcontrib>Mesoudy, Abdelouadoud El</creatorcontrib><creatorcontrib>Dawant, Raphael</creatorcontrib><creatorcontrib>Gliech, Pierre</creatorcontrib><creatorcontrib>Ecoffey, Serge</creatorcontrib><creatorcontrib>Alibart, Fabien</creatorcontrib><creatorcontrib>Pioro-Ladriere, Michel</creatorcontrib><creatorcontrib>Drouin, Dominique</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mouny, Pierre-Antoine</au><au>Beilliard, Yann</au><au>Graveline, Sebastien</au><au>Roux, Marc-Antoine</au><au>Mesoudy, Abdelouadoud El</au><au>Dawant, Raphael</au><au>Gliech, Pierre</au><au>Ecoffey, Serge</au><au>Alibart, Fabien</au><au>Pioro-Ladriere, Michel</au><au>Drouin, Dominique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Memristor-Based Cryogenic Programmable DC Sources for Scalable In Situ Quantum-Dot Control</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>70</volume><issue>4</issue><spage>1989</spage><epage>1995</epage><pages>1989-1995</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Current quantum systems based on spin qubits are controlled by classical electronics located outside the cryostat. This approach creates a major wiring bottleneck, which is one of the main roadblocks toward scalable quantum computers. Thus, we propose a scalable memristor-based programmable dc source that can perform biasing of quantum dots (QDs) inside the cryostat. This novel cryogenic approach would enable to control the applied voltage on the electrostatic gates by programming the resistance of the memristors, thus storing in the latter the appropriate conditions to form the QDs. In this study, we first demonstrate multilevel resistance programming of TiO2 memristors at 4.2 K, an essential feature to achieve voltage tunability of the memristor-based dc source. We then report hardware-based simulations of the electrical performance of the proposed dc source. A cryogenic TiO2 memristor model fit on our experimental data at 4.2 K was used to show a 1 V voltage range and 100 <inline-formula> <tex-math notation="LaTeX">\mu \text{V} </tex-math></inline-formula> resolution in situ memristor-based dc source. Finally, we simulate the biasing of double QDs (DQDs), enabling 120 s stability diagrams. This demonstration is a first step toward advanced cryogenic applications for resistive memories, such as cryogenic control electronics for quantum computers.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2023.3244133</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7736-8116</orcidid><orcidid>https://orcid.org/0000-0003-2156-967X</orcidid><orcidid>https://orcid.org/0000-0001-7976-9661</orcidid><orcidid>https://orcid.org/0000-0002-3002-501X</orcidid><orcidid>https://orcid.org/0000-0001-9762-5557</orcidid><orcidid>https://orcid.org/0000-0003-4941-8347</orcidid><orcidid>https://orcid.org/0000-0001-9115-0052</orcidid><orcidid>https://orcid.org/0000-0002-3492-8654</orcidid><orcidid>https://orcid.org/0000-0002-9591-220X</orcidid><orcidid>https://orcid.org/0000-0003-0311-8840</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2023-04, Vol.70 (4), p.1989-1995 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_proquest_journals_2790136280 |
source | IEEE Electronic Library (IEL) |
subjects | Cryogenic electronics Cryogenic engineering Cryogenics Electric potential Electron spin Electronics Engineering Sciences Logic gates Memristors Power dissipation Quantum computers Quantum computing Quantum dots quantum dots (QDs) Qubit Qubits (quantum computing) Resistance Titanium dioxide Voltage Wiring |
title | Memristor-Based Cryogenic Programmable DC Sources for Scalable In Situ Quantum-Dot Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A11%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Memristor-Based%20Cryogenic%20Programmable%20DC%20Sources%20for%20Scalable%20In%20Situ%20Quantum-Dot%20Control&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Mouny,%20Pierre-Antoine&rft.date=2023-04-01&rft.volume=70&rft.issue=4&rft.spage=1989&rft.epage=1995&rft.pages=1989-1995&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2023.3244133&rft_dat=%3Cproquest_hal_p%3E2790136280%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2790136280&rft_id=info:pmid/&rft_ieee_id=10048765&rfr_iscdi=true |