Memristor-Based Cryogenic Programmable DC Sources for Scalable In Situ Quantum-Dot Control

Current quantum systems based on spin qubits are controlled by classical electronics located outside the cryostat. This approach creates a major wiring bottleneck, which is one of the main roadblocks toward scalable quantum computers. Thus, we propose a scalable memristor-based programmable dc sourc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2023-04, Vol.70 (4), p.1989-1995
Hauptverfasser: Mouny, Pierre-Antoine, Beilliard, Yann, Graveline, Sebastien, Roux, Marc-Antoine, Mesoudy, Abdelouadoud El, Dawant, Raphael, Gliech, Pierre, Ecoffey, Serge, Alibart, Fabien, Pioro-Ladriere, Michel, Drouin, Dominique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1995
container_issue 4
container_start_page 1989
container_title IEEE transactions on electron devices
container_volume 70
creator Mouny, Pierre-Antoine
Beilliard, Yann
Graveline, Sebastien
Roux, Marc-Antoine
Mesoudy, Abdelouadoud El
Dawant, Raphael
Gliech, Pierre
Ecoffey, Serge
Alibart, Fabien
Pioro-Ladriere, Michel
Drouin, Dominique
description Current quantum systems based on spin qubits are controlled by classical electronics located outside the cryostat. This approach creates a major wiring bottleneck, which is one of the main roadblocks toward scalable quantum computers. Thus, we propose a scalable memristor-based programmable dc source that can perform biasing of quantum dots (QDs) inside the cryostat. This novel cryogenic approach would enable to control the applied voltage on the electrostatic gates by programming the resistance of the memristors, thus storing in the latter the appropriate conditions to form the QDs. In this study, we first demonstrate multilevel resistance programming of TiO2 memristors at 4.2 K, an essential feature to achieve voltage tunability of the memristor-based dc source. We then report hardware-based simulations of the electrical performance of the proposed dc source. A cryogenic TiO2 memristor model fit on our experimental data at 4.2 K was used to show a 1 V voltage range and 100 \mu \text{V} resolution in situ memristor-based dc source. Finally, we simulate the biasing of double QDs (DQDs), enabling 120 s stability diagrams. This demonstration is a first step toward advanced cryogenic applications for resistive memories, such as cryogenic control electronics for quantum computers.
doi_str_mv 10.1109/TED.2023.3244133
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_2790136280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10048765</ieee_id><sourcerecordid>2790136280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-81772424b70a8775cb30532ef9591cf579c358aa909747a20343f7557a3d9b8e3</originalsourceid><addsrcrecordid>eNpNkL1PwzAQxS0EEuVjZ2CwxMSQYvvs2B5LypdUBKiwsFhu6pRUSQx2gsR_j0sRYjrd6fee7j2ETigZU0r0xfPVdMwIgzEwzinADhpRIWSmc57vohEhVGUaFOyjgxjXac05ZyP0eu_aUMfeh-zSRrfERfjyK9fVJX4MfhVs29pF4_C0wHM_hNJFXPmA56Vtfu53HZ7X_YCfBtv1Q5tNfY8L3_XBN0dor7JNdMe_8xC9XF89F7fZ7OHmrpjMshJy1WeKSsk44wtJrJJSlAsgApirtNC0rITUJQhlrSZacmkZAQ6VTNEsLPVCOThE51vfN9uY91C3NnwZb2tzO5mZzY3wZAggPmliz7bse_Afg4u9WadUXXrPMKkJhZwpkiiypcrgYwyu-rOlxGzaNqlts2nb_LadJKdbSe2c-4cTrmQu4Bvoang_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2790136280</pqid></control><display><type>article</type><title>Memristor-Based Cryogenic Programmable DC Sources for Scalable In Situ Quantum-Dot Control</title><source>IEEE Electronic Library (IEL)</source><creator>Mouny, Pierre-Antoine ; Beilliard, Yann ; Graveline, Sebastien ; Roux, Marc-Antoine ; Mesoudy, Abdelouadoud El ; Dawant, Raphael ; Gliech, Pierre ; Ecoffey, Serge ; Alibart, Fabien ; Pioro-Ladriere, Michel ; Drouin, Dominique</creator><creatorcontrib>Mouny, Pierre-Antoine ; Beilliard, Yann ; Graveline, Sebastien ; Roux, Marc-Antoine ; Mesoudy, Abdelouadoud El ; Dawant, Raphael ; Gliech, Pierre ; Ecoffey, Serge ; Alibart, Fabien ; Pioro-Ladriere, Michel ; Drouin, Dominique</creatorcontrib><description>Current quantum systems based on spin qubits are controlled by classical electronics located outside the cryostat. This approach creates a major wiring bottleneck, which is one of the main roadblocks toward scalable quantum computers. Thus, we propose a scalable memristor-based programmable dc source that can perform biasing of quantum dots (QDs) inside the cryostat. This novel cryogenic approach would enable to control the applied voltage on the electrostatic gates by programming the resistance of the memristors, thus storing in the latter the appropriate conditions to form the QDs. In this study, we first demonstrate multilevel resistance programming of TiO2 memristors at 4.2 K, an essential feature to achieve voltage tunability of the memristor-based dc source. We then report hardware-based simulations of the electrical performance of the proposed dc source. A cryogenic TiO2 memristor model fit on our experimental data at 4.2 K was used to show a 1 V voltage range and 100 &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\mu \text{V} &lt;/tex-math&gt;&lt;/inline-formula&gt; resolution in situ memristor-based dc source. Finally, we simulate the biasing of double QDs (DQDs), enabling 120 s stability diagrams. This demonstration is a first step toward advanced cryogenic applications for resistive memories, such as cryogenic control electronics for quantum computers.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2023.3244133</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cryogenic electronics ; Cryogenic engineering ; Cryogenics ; Electric potential ; Electron spin ; Electronics ; Engineering Sciences ; Logic gates ; Memristors ; Power dissipation ; Quantum computers ; Quantum computing ; Quantum dots ; quantum dots (QDs) ; Qubit ; Qubits (quantum computing) ; Resistance ; Titanium dioxide ; Voltage ; Wiring</subject><ispartof>IEEE transactions on electron devices, 2023-04, Vol.70 (4), p.1989-1995</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-81772424b70a8775cb30532ef9591cf579c358aa909747a20343f7557a3d9b8e3</citedby><cites>FETCH-LOGICAL-c368t-81772424b70a8775cb30532ef9591cf579c358aa909747a20343f7557a3d9b8e3</cites><orcidid>0000-0002-7736-8116 ; 0000-0003-2156-967X ; 0000-0001-7976-9661 ; 0000-0002-3002-501X ; 0000-0001-9762-5557 ; 0000-0003-4941-8347 ; 0000-0001-9115-0052 ; 0000-0002-3492-8654 ; 0000-0002-9591-220X ; 0000-0003-0311-8840</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10048765$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04053335$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mouny, Pierre-Antoine</creatorcontrib><creatorcontrib>Beilliard, Yann</creatorcontrib><creatorcontrib>Graveline, Sebastien</creatorcontrib><creatorcontrib>Roux, Marc-Antoine</creatorcontrib><creatorcontrib>Mesoudy, Abdelouadoud El</creatorcontrib><creatorcontrib>Dawant, Raphael</creatorcontrib><creatorcontrib>Gliech, Pierre</creatorcontrib><creatorcontrib>Ecoffey, Serge</creatorcontrib><creatorcontrib>Alibart, Fabien</creatorcontrib><creatorcontrib>Pioro-Ladriere, Michel</creatorcontrib><creatorcontrib>Drouin, Dominique</creatorcontrib><title>Memristor-Based Cryogenic Programmable DC Sources for Scalable In Situ Quantum-Dot Control</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Current quantum systems based on spin qubits are controlled by classical electronics located outside the cryostat. This approach creates a major wiring bottleneck, which is one of the main roadblocks toward scalable quantum computers. Thus, we propose a scalable memristor-based programmable dc source that can perform biasing of quantum dots (QDs) inside the cryostat. This novel cryogenic approach would enable to control the applied voltage on the electrostatic gates by programming the resistance of the memristors, thus storing in the latter the appropriate conditions to form the QDs. In this study, we first demonstrate multilevel resistance programming of TiO2 memristors at 4.2 K, an essential feature to achieve voltage tunability of the memristor-based dc source. We then report hardware-based simulations of the electrical performance of the proposed dc source. A cryogenic TiO2 memristor model fit on our experimental data at 4.2 K was used to show a 1 V voltage range and 100 &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\mu \text{V} &lt;/tex-math&gt;&lt;/inline-formula&gt; resolution in situ memristor-based dc source. Finally, we simulate the biasing of double QDs (DQDs), enabling 120 s stability diagrams. This demonstration is a first step toward advanced cryogenic applications for resistive memories, such as cryogenic control electronics for quantum computers.</description><subject>Cryogenic electronics</subject><subject>Cryogenic engineering</subject><subject>Cryogenics</subject><subject>Electric potential</subject><subject>Electron spin</subject><subject>Electronics</subject><subject>Engineering Sciences</subject><subject>Logic gates</subject><subject>Memristors</subject><subject>Power dissipation</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Quantum dots</subject><subject>quantum dots (QDs)</subject><subject>Qubit</subject><subject>Qubits (quantum computing)</subject><subject>Resistance</subject><subject>Titanium dioxide</subject><subject>Voltage</subject><subject>Wiring</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkL1PwzAQxS0EEuVjZ2CwxMSQYvvs2B5LypdUBKiwsFhu6pRUSQx2gsR_j0sRYjrd6fee7j2ETigZU0r0xfPVdMwIgzEwzinADhpRIWSmc57vohEhVGUaFOyjgxjXac05ZyP0eu_aUMfeh-zSRrfERfjyK9fVJX4MfhVs29pF4_C0wHM_hNJFXPmA56Vtfu53HZ7X_YCfBtv1Q5tNfY8L3_XBN0dor7JNdMe_8xC9XF89F7fZ7OHmrpjMshJy1WeKSsk44wtJrJJSlAsgApirtNC0rITUJQhlrSZacmkZAQ6VTNEsLPVCOThE51vfN9uY91C3NnwZb2tzO5mZzY3wZAggPmliz7bse_Afg4u9WadUXXrPMKkJhZwpkiiypcrgYwyu-rOlxGzaNqlts2nb_LadJKdbSe2c-4cTrmQu4Bvoang_</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Mouny, Pierre-Antoine</creator><creator>Beilliard, Yann</creator><creator>Graveline, Sebastien</creator><creator>Roux, Marc-Antoine</creator><creator>Mesoudy, Abdelouadoud El</creator><creator>Dawant, Raphael</creator><creator>Gliech, Pierre</creator><creator>Ecoffey, Serge</creator><creator>Alibart, Fabien</creator><creator>Pioro-Ladriere, Michel</creator><creator>Drouin, Dominique</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7736-8116</orcidid><orcidid>https://orcid.org/0000-0003-2156-967X</orcidid><orcidid>https://orcid.org/0000-0001-7976-9661</orcidid><orcidid>https://orcid.org/0000-0002-3002-501X</orcidid><orcidid>https://orcid.org/0000-0001-9762-5557</orcidid><orcidid>https://orcid.org/0000-0003-4941-8347</orcidid><orcidid>https://orcid.org/0000-0001-9115-0052</orcidid><orcidid>https://orcid.org/0000-0002-3492-8654</orcidid><orcidid>https://orcid.org/0000-0002-9591-220X</orcidid><orcidid>https://orcid.org/0000-0003-0311-8840</orcidid></search><sort><creationdate>20230401</creationdate><title>Memristor-Based Cryogenic Programmable DC Sources for Scalable In Situ Quantum-Dot Control</title><author>Mouny, Pierre-Antoine ; Beilliard, Yann ; Graveline, Sebastien ; Roux, Marc-Antoine ; Mesoudy, Abdelouadoud El ; Dawant, Raphael ; Gliech, Pierre ; Ecoffey, Serge ; Alibart, Fabien ; Pioro-Ladriere, Michel ; Drouin, Dominique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-81772424b70a8775cb30532ef9591cf579c358aa909747a20343f7557a3d9b8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cryogenic electronics</topic><topic>Cryogenic engineering</topic><topic>Cryogenics</topic><topic>Electric potential</topic><topic>Electron spin</topic><topic>Electronics</topic><topic>Engineering Sciences</topic><topic>Logic gates</topic><topic>Memristors</topic><topic>Power dissipation</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Quantum dots</topic><topic>quantum dots (QDs)</topic><topic>Qubit</topic><topic>Qubits (quantum computing)</topic><topic>Resistance</topic><topic>Titanium dioxide</topic><topic>Voltage</topic><topic>Wiring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mouny, Pierre-Antoine</creatorcontrib><creatorcontrib>Beilliard, Yann</creatorcontrib><creatorcontrib>Graveline, Sebastien</creatorcontrib><creatorcontrib>Roux, Marc-Antoine</creatorcontrib><creatorcontrib>Mesoudy, Abdelouadoud El</creatorcontrib><creatorcontrib>Dawant, Raphael</creatorcontrib><creatorcontrib>Gliech, Pierre</creatorcontrib><creatorcontrib>Ecoffey, Serge</creatorcontrib><creatorcontrib>Alibart, Fabien</creatorcontrib><creatorcontrib>Pioro-Ladriere, Michel</creatorcontrib><creatorcontrib>Drouin, Dominique</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mouny, Pierre-Antoine</au><au>Beilliard, Yann</au><au>Graveline, Sebastien</au><au>Roux, Marc-Antoine</au><au>Mesoudy, Abdelouadoud El</au><au>Dawant, Raphael</au><au>Gliech, Pierre</au><au>Ecoffey, Serge</au><au>Alibart, Fabien</au><au>Pioro-Ladriere, Michel</au><au>Drouin, Dominique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Memristor-Based Cryogenic Programmable DC Sources for Scalable In Situ Quantum-Dot Control</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>70</volume><issue>4</issue><spage>1989</spage><epage>1995</epage><pages>1989-1995</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Current quantum systems based on spin qubits are controlled by classical electronics located outside the cryostat. This approach creates a major wiring bottleneck, which is one of the main roadblocks toward scalable quantum computers. Thus, we propose a scalable memristor-based programmable dc source that can perform biasing of quantum dots (QDs) inside the cryostat. This novel cryogenic approach would enable to control the applied voltage on the electrostatic gates by programming the resistance of the memristors, thus storing in the latter the appropriate conditions to form the QDs. In this study, we first demonstrate multilevel resistance programming of TiO2 memristors at 4.2 K, an essential feature to achieve voltage tunability of the memristor-based dc source. We then report hardware-based simulations of the electrical performance of the proposed dc source. A cryogenic TiO2 memristor model fit on our experimental data at 4.2 K was used to show a 1 V voltage range and 100 &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\mu \text{V} &lt;/tex-math&gt;&lt;/inline-formula&gt; resolution in situ memristor-based dc source. Finally, we simulate the biasing of double QDs (DQDs), enabling 120 s stability diagrams. This demonstration is a first step toward advanced cryogenic applications for resistive memories, such as cryogenic control electronics for quantum computers.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2023.3244133</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7736-8116</orcidid><orcidid>https://orcid.org/0000-0003-2156-967X</orcidid><orcidid>https://orcid.org/0000-0001-7976-9661</orcidid><orcidid>https://orcid.org/0000-0002-3002-501X</orcidid><orcidid>https://orcid.org/0000-0001-9762-5557</orcidid><orcidid>https://orcid.org/0000-0003-4941-8347</orcidid><orcidid>https://orcid.org/0000-0001-9115-0052</orcidid><orcidid>https://orcid.org/0000-0002-3492-8654</orcidid><orcidid>https://orcid.org/0000-0002-9591-220X</orcidid><orcidid>https://orcid.org/0000-0003-0311-8840</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2023-04, Vol.70 (4), p.1989-1995
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_journals_2790136280
source IEEE Electronic Library (IEL)
subjects Cryogenic electronics
Cryogenic engineering
Cryogenics
Electric potential
Electron spin
Electronics
Engineering Sciences
Logic gates
Memristors
Power dissipation
Quantum computers
Quantum computing
Quantum dots
quantum dots (QDs)
Qubit
Qubits (quantum computing)
Resistance
Titanium dioxide
Voltage
Wiring
title Memristor-Based Cryogenic Programmable DC Sources for Scalable In Situ Quantum-Dot Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A11%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Memristor-Based%20Cryogenic%20Programmable%20DC%20Sources%20for%20Scalable%20In%20Situ%20Quantum-Dot%20Control&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Mouny,%20Pierre-Antoine&rft.date=2023-04-01&rft.volume=70&rft.issue=4&rft.spage=1989&rft.epage=1995&rft.pages=1989-1995&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2023.3244133&rft_dat=%3Cproquest_hal_p%3E2790136280%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2790136280&rft_id=info:pmid/&rft_ieee_id=10048765&rfr_iscdi=true