Using Conditional Inference Trees to (Re)Explore Nonprofit Board Composition

This Research Note introduces nonprofit scholars to the contemporary analytical tool of conditional inference trees as a means to shed more light on the institutional forces behind the changing composition of nonprofit boards of trustees. Revisiting the data of the Six-Cities Cultures of Trusteeship...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonprofit and voluntary sector quarterly 2023-04, Vol.52 (2), p.529-543
Hauptverfasser: Simonoff, Jeffrey S., Abzug, Rikki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 543
container_issue 2
container_start_page 529
container_title Nonprofit and voluntary sector quarterly
container_volume 52
creator Simonoff, Jeffrey S.
Abzug, Rikki
description This Research Note introduces nonprofit scholars to the contemporary analytical tool of conditional inference trees as a means to shed more light on the institutional forces behind the changing composition of nonprofit boards of trustees. Revisiting the data of the Six-Cities Cultures of Trusteeship Project, this note illustrates the illuminating power of conditional inference trees for analyzing data (particularly categorical data), not well served by significance testing. Applying these popular models adds depth, nuance, and increased clarity to some of the original findings from the Six-Cities research project. This empirical case serves as a how-to for future researchers hoping to more flexibly model the relative impact of institutional (and other) variables on nonprofit organization structures, as well as expand their methodological toolkit when dealing with all sorts of regression problems.
doi_str_mv 10.1177/08997640221089259
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2789973158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_08997640221089259</sage_id><sourcerecordid>2789973158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-5f56227a8d7eb62ba28e587d15b8e3e6687746fad1534cf84cc1cb252b8e95003</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhoMoOKc_wFvAix46kzRp0qOWqYOhINu5pOmX0bE1NelA_72pFXYQTwn5nufLy4vQNSUzSqW8JyrPZcYJYzRemchP0IQKwRKZ5uIUTYZ5MgDn6CKELSGUZVxN0HIdmnaDC9fWTd-4Vu_worXgoTWAVx4g4N7h23e4m392O-cBv7q28842PX502tdR3Xcu_MiX6MzqXYCr33OK1k_zVfGSLN-eF8XDMjExYJ8IKzLGpFa1hCpjlWYKhJI1FZWCFLJMSckzq-NDyo1V3BhqKiZYHOeCkHSKbsa9McjHAUJfbt3Bx-yhZHIoIqVCRYqOlPEuBA-27Hyz1_6rpKQcSiv_lBYdPDpgXNuEo6E4ETJXgkdkNiJBb-D48f87vwHM93WO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789973158</pqid></control><display><type>article</type><title>Using Conditional Inference Trees to (Re)Explore Nonprofit Board Composition</title><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><source>SAGE Complete A-Z List</source><source>Alma/SFX Local Collection</source><creator>Simonoff, Jeffrey S. ; Abzug, Rikki</creator><creatorcontrib>Simonoff, Jeffrey S. ; Abzug, Rikki</creatorcontrib><description>This Research Note introduces nonprofit scholars to the contemporary analytical tool of conditional inference trees as a means to shed more light on the institutional forces behind the changing composition of nonprofit boards of trustees. Revisiting the data of the Six-Cities Cultures of Trusteeship Project, this note illustrates the illuminating power of conditional inference trees for analyzing data (particularly categorical data), not well served by significance testing. Applying these popular models adds depth, nuance, and increased clarity to some of the original findings from the Six-Cities research project. This empirical case serves as a how-to for future researchers hoping to more flexibly model the relative impact of institutional (and other) variables on nonprofit organization structures, as well as expand their methodological toolkit when dealing with all sorts of regression problems.</description><identifier>ISSN: 0899-7640</identifier><identifier>EISSN: 1552-7395</identifier><identifier>EISSN: 0899-7640</identifier><identifier>DOI: 10.1177/08997640221089259</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Inference ; Nonparametric statistics ; Nonprofit organizations ; Trees ; Trustees</subject><ispartof>Nonprofit and voluntary sector quarterly, 2023-04, Vol.52 (2), p.529-543</ispartof><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-5f56227a8d7eb62ba28e587d15b8e3e6687746fad1534cf84cc1cb252b8e95003</citedby><cites>FETCH-LOGICAL-c402t-5f56227a8d7eb62ba28e587d15b8e3e6687746fad1534cf84cc1cb252b8e95003</cites><orcidid>0000-0003-1824-0099</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/08997640221089259$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/08997640221089259$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21817,27922,27923,30997,43619,43620</link.rule.ids></links><search><creatorcontrib>Simonoff, Jeffrey S.</creatorcontrib><creatorcontrib>Abzug, Rikki</creatorcontrib><title>Using Conditional Inference Trees to (Re)Explore Nonprofit Board Composition</title><title>Nonprofit and voluntary sector quarterly</title><description>This Research Note introduces nonprofit scholars to the contemporary analytical tool of conditional inference trees as a means to shed more light on the institutional forces behind the changing composition of nonprofit boards of trustees. Revisiting the data of the Six-Cities Cultures of Trusteeship Project, this note illustrates the illuminating power of conditional inference trees for analyzing data (particularly categorical data), not well served by significance testing. Applying these popular models adds depth, nuance, and increased clarity to some of the original findings from the Six-Cities research project. This empirical case serves as a how-to for future researchers hoping to more flexibly model the relative impact of institutional (and other) variables on nonprofit organization structures, as well as expand their methodological toolkit when dealing with all sorts of regression problems.</description><subject>Inference</subject><subject>Nonparametric statistics</subject><subject>Nonprofit organizations</subject><subject>Trees</subject><subject>Trustees</subject><issn>0899-7640</issn><issn>1552-7395</issn><issn>0899-7640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><recordid>eNp1kEFLwzAYhoMoOKc_wFvAix46kzRp0qOWqYOhINu5pOmX0bE1NelA_72pFXYQTwn5nufLy4vQNSUzSqW8JyrPZcYJYzRemchP0IQKwRKZ5uIUTYZ5MgDn6CKELSGUZVxN0HIdmnaDC9fWTd-4Vu_worXgoTWAVx4g4N7h23e4m392O-cBv7q28842PX502tdR3Xcu_MiX6MzqXYCr33OK1k_zVfGSLN-eF8XDMjExYJ8IKzLGpFa1hCpjlWYKhJI1FZWCFLJMSckzq-NDyo1V3BhqKiZYHOeCkHSKbsa9McjHAUJfbt3Bx-yhZHIoIqVCRYqOlPEuBA-27Hyz1_6rpKQcSiv_lBYdPDpgXNuEo6E4ETJXgkdkNiJBb-D48f87vwHM93WO</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Simonoff, Jeffrey S.</creator><creator>Abzug, Rikki</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><orcidid>https://orcid.org/0000-0003-1824-0099</orcidid></search><sort><creationdate>20230401</creationdate><title>Using Conditional Inference Trees to (Re)Explore Nonprofit Board Composition</title><author>Simonoff, Jeffrey S. ; Abzug, Rikki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-5f56227a8d7eb62ba28e587d15b8e3e6687746fad1534cf84cc1cb252b8e95003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Inference</topic><topic>Nonparametric statistics</topic><topic>Nonprofit organizations</topic><topic>Trees</topic><topic>Trustees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simonoff, Jeffrey S.</creatorcontrib><creatorcontrib>Abzug, Rikki</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><jtitle>Nonprofit and voluntary sector quarterly</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simonoff, Jeffrey S.</au><au>Abzug, Rikki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Conditional Inference Trees to (Re)Explore Nonprofit Board Composition</atitle><jtitle>Nonprofit and voluntary sector quarterly</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>52</volume><issue>2</issue><spage>529</spage><epage>543</epage><pages>529-543</pages><issn>0899-7640</issn><eissn>1552-7395</eissn><eissn>0899-7640</eissn><abstract>This Research Note introduces nonprofit scholars to the contemporary analytical tool of conditional inference trees as a means to shed more light on the institutional forces behind the changing composition of nonprofit boards of trustees. Revisiting the data of the Six-Cities Cultures of Trusteeship Project, this note illustrates the illuminating power of conditional inference trees for analyzing data (particularly categorical data), not well served by significance testing. Applying these popular models adds depth, nuance, and increased clarity to some of the original findings from the Six-Cities research project. This empirical case serves as a how-to for future researchers hoping to more flexibly model the relative impact of institutional (and other) variables on nonprofit organization structures, as well as expand their methodological toolkit when dealing with all sorts of regression problems.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.1177/08997640221089259</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1824-0099</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0899-7640
ispartof Nonprofit and voluntary sector quarterly, 2023-04, Vol.52 (2), p.529-543
issn 0899-7640
1552-7395
0899-7640
language eng
recordid cdi_proquest_journals_2789973158
source Applied Social Sciences Index & Abstracts (ASSIA); SAGE Complete A-Z List; Alma/SFX Local Collection
subjects Inference
Nonparametric statistics
Nonprofit organizations
Trees
Trustees
title Using Conditional Inference Trees to (Re)Explore Nonprofit Board Composition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A13%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Conditional%20Inference%20Trees%20to%20(Re)Explore%20Nonprofit%20Board%20Composition&rft.jtitle=Nonprofit%20and%20voluntary%20sector%20quarterly&rft.au=Simonoff,%20Jeffrey%20S.&rft.date=2023-04-01&rft.volume=52&rft.issue=2&rft.spage=529&rft.epage=543&rft.pages=529-543&rft.issn=0899-7640&rft.eissn=1552-7395&rft_id=info:doi/10.1177/08997640221089259&rft_dat=%3Cproquest_cross%3E2789973158%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2789973158&rft_id=info:pmid/&rft_sage_id=10.1177_08997640221089259&rfr_iscdi=true