Using Conditional Inference Trees to (Re)Explore Nonprofit Board Composition
This Research Note introduces nonprofit scholars to the contemporary analytical tool of conditional inference trees as a means to shed more light on the institutional forces behind the changing composition of nonprofit boards of trustees. Revisiting the data of the Six-Cities Cultures of Trusteeship...
Gespeichert in:
Veröffentlicht in: | Nonprofit and voluntary sector quarterly 2023-04, Vol.52 (2), p.529-543 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 543 |
---|---|
container_issue | 2 |
container_start_page | 529 |
container_title | Nonprofit and voluntary sector quarterly |
container_volume | 52 |
creator | Simonoff, Jeffrey S. Abzug, Rikki |
description | This Research Note introduces nonprofit scholars to the contemporary analytical tool of conditional inference trees as a means to shed more light on the institutional forces behind the changing composition of nonprofit boards of trustees. Revisiting the data of the Six-Cities Cultures of Trusteeship Project, this note illustrates the illuminating power of conditional inference trees for analyzing data (particularly categorical data), not well served by significance testing. Applying these popular models adds depth, nuance, and increased clarity to some of the original findings from the Six-Cities research project. This empirical case serves as a how-to for future researchers hoping to more flexibly model the relative impact of institutional (and other) variables on nonprofit organization structures, as well as expand their methodological toolkit when dealing with all sorts of regression problems. |
doi_str_mv | 10.1177/08997640221089259 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2789973158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_08997640221089259</sage_id><sourcerecordid>2789973158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-5f56227a8d7eb62ba28e587d15b8e3e6687746fad1534cf84cc1cb252b8e95003</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhoMoOKc_wFvAix46kzRp0qOWqYOhINu5pOmX0bE1NelA_72pFXYQTwn5nufLy4vQNSUzSqW8JyrPZcYJYzRemchP0IQKwRKZ5uIUTYZ5MgDn6CKELSGUZVxN0HIdmnaDC9fWTd-4Vu_worXgoTWAVx4g4N7h23e4m392O-cBv7q28842PX502tdR3Xcu_MiX6MzqXYCr33OK1k_zVfGSLN-eF8XDMjExYJ8IKzLGpFa1hCpjlWYKhJI1FZWCFLJMSckzq-NDyo1V3BhqKiZYHOeCkHSKbsa9McjHAUJfbt3Bx-yhZHIoIqVCRYqOlPEuBA-27Hyz1_6rpKQcSiv_lBYdPDpgXNuEo6E4ETJXgkdkNiJBb-D48f87vwHM93WO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789973158</pqid></control><display><type>article</type><title>Using Conditional Inference Trees to (Re)Explore Nonprofit Board Composition</title><source>Applied Social Sciences Index & Abstracts (ASSIA)</source><source>SAGE Complete A-Z List</source><source>Alma/SFX Local Collection</source><creator>Simonoff, Jeffrey S. ; Abzug, Rikki</creator><creatorcontrib>Simonoff, Jeffrey S. ; Abzug, Rikki</creatorcontrib><description>This Research Note introduces nonprofit scholars to the contemporary analytical tool of conditional inference trees as a means to shed more light on the institutional forces behind the changing composition of nonprofit boards of trustees. Revisiting the data of the Six-Cities Cultures of Trusteeship Project, this note illustrates the illuminating power of conditional inference trees for analyzing data (particularly categorical data), not well served by significance testing. Applying these popular models adds depth, nuance, and increased clarity to some of the original findings from the Six-Cities research project. This empirical case serves as a how-to for future researchers hoping to more flexibly model the relative impact of institutional (and other) variables on nonprofit organization structures, as well as expand their methodological toolkit when dealing with all sorts of regression problems.</description><identifier>ISSN: 0899-7640</identifier><identifier>EISSN: 1552-7395</identifier><identifier>EISSN: 0899-7640</identifier><identifier>DOI: 10.1177/08997640221089259</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Inference ; Nonparametric statistics ; Nonprofit organizations ; Trees ; Trustees</subject><ispartof>Nonprofit and voluntary sector quarterly, 2023-04, Vol.52 (2), p.529-543</ispartof><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-5f56227a8d7eb62ba28e587d15b8e3e6687746fad1534cf84cc1cb252b8e95003</citedby><cites>FETCH-LOGICAL-c402t-5f56227a8d7eb62ba28e587d15b8e3e6687746fad1534cf84cc1cb252b8e95003</cites><orcidid>0000-0003-1824-0099</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/08997640221089259$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/08997640221089259$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21817,27922,27923,30997,43619,43620</link.rule.ids></links><search><creatorcontrib>Simonoff, Jeffrey S.</creatorcontrib><creatorcontrib>Abzug, Rikki</creatorcontrib><title>Using Conditional Inference Trees to (Re)Explore Nonprofit Board Composition</title><title>Nonprofit and voluntary sector quarterly</title><description>This Research Note introduces nonprofit scholars to the contemporary analytical tool of conditional inference trees as a means to shed more light on the institutional forces behind the changing composition of nonprofit boards of trustees. Revisiting the data of the Six-Cities Cultures of Trusteeship Project, this note illustrates the illuminating power of conditional inference trees for analyzing data (particularly categorical data), not well served by significance testing. Applying these popular models adds depth, nuance, and increased clarity to some of the original findings from the Six-Cities research project. This empirical case serves as a how-to for future researchers hoping to more flexibly model the relative impact of institutional (and other) variables on nonprofit organization structures, as well as expand their methodological toolkit when dealing with all sorts of regression problems.</description><subject>Inference</subject><subject>Nonparametric statistics</subject><subject>Nonprofit organizations</subject><subject>Trees</subject><subject>Trustees</subject><issn>0899-7640</issn><issn>1552-7395</issn><issn>0899-7640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><recordid>eNp1kEFLwzAYhoMoOKc_wFvAix46kzRp0qOWqYOhINu5pOmX0bE1NelA_72pFXYQTwn5nufLy4vQNSUzSqW8JyrPZcYJYzRemchP0IQKwRKZ5uIUTYZ5MgDn6CKELSGUZVxN0HIdmnaDC9fWTd-4Vu_worXgoTWAVx4g4N7h23e4m392O-cBv7q28842PX502tdR3Xcu_MiX6MzqXYCr33OK1k_zVfGSLN-eF8XDMjExYJ8IKzLGpFa1hCpjlWYKhJI1FZWCFLJMSckzq-NDyo1V3BhqKiZYHOeCkHSKbsa9McjHAUJfbt3Bx-yhZHIoIqVCRYqOlPEuBA-27Hyz1_6rpKQcSiv_lBYdPDpgXNuEo6E4ETJXgkdkNiJBb-D48f87vwHM93WO</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Simonoff, Jeffrey S.</creator><creator>Abzug, Rikki</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><orcidid>https://orcid.org/0000-0003-1824-0099</orcidid></search><sort><creationdate>20230401</creationdate><title>Using Conditional Inference Trees to (Re)Explore Nonprofit Board Composition</title><author>Simonoff, Jeffrey S. ; Abzug, Rikki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-5f56227a8d7eb62ba28e587d15b8e3e6687746fad1534cf84cc1cb252b8e95003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Inference</topic><topic>Nonparametric statistics</topic><topic>Nonprofit organizations</topic><topic>Trees</topic><topic>Trustees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simonoff, Jeffrey S.</creatorcontrib><creatorcontrib>Abzug, Rikki</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index & Abstracts (ASSIA)</collection><jtitle>Nonprofit and voluntary sector quarterly</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simonoff, Jeffrey S.</au><au>Abzug, Rikki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Conditional Inference Trees to (Re)Explore Nonprofit Board Composition</atitle><jtitle>Nonprofit and voluntary sector quarterly</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>52</volume><issue>2</issue><spage>529</spage><epage>543</epage><pages>529-543</pages><issn>0899-7640</issn><eissn>1552-7395</eissn><eissn>0899-7640</eissn><abstract>This Research Note introduces nonprofit scholars to the contemporary analytical tool of conditional inference trees as a means to shed more light on the institutional forces behind the changing composition of nonprofit boards of trustees. Revisiting the data of the Six-Cities Cultures of Trusteeship Project, this note illustrates the illuminating power of conditional inference trees for analyzing data (particularly categorical data), not well served by significance testing. Applying these popular models adds depth, nuance, and increased clarity to some of the original findings from the Six-Cities research project. This empirical case serves as a how-to for future researchers hoping to more flexibly model the relative impact of institutional (and other) variables on nonprofit organization structures, as well as expand their methodological toolkit when dealing with all sorts of regression problems.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.1177/08997640221089259</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1824-0099</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0899-7640 |
ispartof | Nonprofit and voluntary sector quarterly, 2023-04, Vol.52 (2), p.529-543 |
issn | 0899-7640 1552-7395 0899-7640 |
language | eng |
recordid | cdi_proquest_journals_2789973158 |
source | Applied Social Sciences Index & Abstracts (ASSIA); SAGE Complete A-Z List; Alma/SFX Local Collection |
subjects | Inference Nonparametric statistics Nonprofit organizations Trees Trustees |
title | Using Conditional Inference Trees to (Re)Explore Nonprofit Board Composition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A13%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Conditional%20Inference%20Trees%20to%20(Re)Explore%20Nonprofit%20Board%20Composition&rft.jtitle=Nonprofit%20and%20voluntary%20sector%20quarterly&rft.au=Simonoff,%20Jeffrey%20S.&rft.date=2023-04-01&rft.volume=52&rft.issue=2&rft.spage=529&rft.epage=543&rft.pages=529-543&rft.issn=0899-7640&rft.eissn=1552-7395&rft_id=info:doi/10.1177/08997640221089259&rft_dat=%3Cproquest_cross%3E2789973158%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2789973158&rft_id=info:pmid/&rft_sage_id=10.1177_08997640221089259&rfr_iscdi=true |