Regional-scale reactive transport modelling of hydrogeochemical evolution in a karstic carbonate aquifer
A regional-scale reactive transport model is used to conduct a quantitative assessment of the chemical and isotopic processes that form a conceptual model of geochemical evolution. The primary geochemical reactions described in the conceptual model are incongruent dolomite and gypsum dissolution fol...
Gespeichert in:
Veröffentlicht in: | Hydrogeology journal 2023-03, Vol.31 (2), p.435-452 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 452 |
---|---|
container_issue | 2 |
container_start_page | 435 |
container_title | Hydrogeology journal |
container_volume | 31 |
creator | Priebe, E. H. Amos, R. T. Jackson, R. E. Rudolph, D. L. |
description | A regional-scale reactive transport model is used to conduct a quantitative assessment of the chemical and isotopic processes that form a conceptual model of geochemical evolution. The primary geochemical reactions described in the conceptual model are incongruent dolomite and gypsum dissolution followed by a series of redox reactions and sulphur isotope fractionation with closed-to-atmosphere groundwater evolution. The investigated aquifer comprises karstic carbonate bedrock with a hydraulic conductivity (
K
) range spanning several orders of magnitude. Hydrochemical evolution was simulated with a fully saturated one-dimensional model using the multicomponent reactive transport code MIN3P. Five steady -state model scenarios representing the known range of
K
and porosity simulate geochemical and isotopic evolution along a hypothetical 50-km flowpath. Simulation results are compared with sparse field observations along the flowpath. Although field observations show similar trend directions for all parameters, the magnitude of these trends varies due to differences in residence times. The model results bracket the field observations well for all parameters, except for Mg, and thus these results confirm that variability in field trends can be attributed to physical heterogeneity. The good agreement between models and field observations demonstrates that the geochemical and isotopic processes forming the conceptual model can be quantitatively reproduced. This supports water management activities by establishing hydrochemical end members that may be used to constrain recharge area mapping, assess flow zone continuity and identify areas of older evolved waters. These results also support the use of reactive transport models for quantifying chemical processes in regional-scale groundwater flow systems. |
doi_str_mv | 10.1007/s10040-022-02568-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2789885636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2789885636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-6e38636886100a699e46930d2a537e88cd1327fdcc4754f13836679eee7686133</originalsourceid><addsrcrecordid>eNp9kE1LAzEURQdRsFb_gKuA62i-JskspfgFBUF0HWLmzTR1OmmTmUL_vbEjuHPx8rK458C7RXFNyS0lRN2l_AqCCWN5SqmxOClmVPASE1qq0-OfYkaVOC8uUlqTHKeKz4rVG7Q-9LbDydkOUATrBr8HNETbp22IA9qEGrrO9y0KDVod6hhaCG4FG58JBPvQjUNWIN8ji75sTIN3yNn4mbUDILsbfQPxsjhrbJfg6nfPi4_Hh_fFM16-Pr0s7pfYMUUGLIFryaXWMl9kZVWBkBUnNbMlV6C1qylnqqmdE6oUDeWaS6kqAFAyM5zPi5vJu41hN0IazDqMMR-YDFO60rrM-pxiU8rFkFKExmyj39h4MJSYn0bN1KjJjZpjo0ZkiE9QyuG-hfin_of6Bj96eWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789885636</pqid></control><display><type>article</type><title>Regional-scale reactive transport modelling of hydrogeochemical evolution in a karstic carbonate aquifer</title><source>SpringerLink Journals</source><creator>Priebe, E. H. ; Amos, R. T. ; Jackson, R. E. ; Rudolph, D. L.</creator><creatorcontrib>Priebe, E. H. ; Amos, R. T. ; Jackson, R. E. ; Rudolph, D. L.</creatorcontrib><description>A regional-scale reactive transport model is used to conduct a quantitative assessment of the chemical and isotopic processes that form a conceptual model of geochemical evolution. The primary geochemical reactions described in the conceptual model are incongruent dolomite and gypsum dissolution followed by a series of redox reactions and sulphur isotope fractionation with closed-to-atmosphere groundwater evolution. The investigated aquifer comprises karstic carbonate bedrock with a hydraulic conductivity (
K
) range spanning several orders of magnitude. Hydrochemical evolution was simulated with a fully saturated one-dimensional model using the multicomponent reactive transport code MIN3P. Five steady -state model scenarios representing the known range of
K
and porosity simulate geochemical and isotopic evolution along a hypothetical 50-km flowpath. Simulation results are compared with sparse field observations along the flowpath. Although field observations show similar trend directions for all parameters, the magnitude of these trends varies due to differences in residence times. The model results bracket the field observations well for all parameters, except for Mg, and thus these results confirm that variability in field trends can be attributed to physical heterogeneity. The good agreement between models and field observations demonstrates that the geochemical and isotopic processes forming the conceptual model can be quantitatively reproduced. This supports water management activities by establishing hydrochemical end members that may be used to constrain recharge area mapping, assess flow zone continuity and identify areas of older evolved waters. These results also support the use of reactive transport models for quantifying chemical processes in regional-scale groundwater flow systems.</description><identifier>ISSN: 1431-2174</identifier><identifier>EISSN: 1435-0157</identifier><identifier>DOI: 10.1007/s10040-022-02568-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aquatic Pollution ; Aquifers ; Atmospheric evolution ; Atmospheric models ; Bedrock ; Carbonates ; Cartography ; Chemical reactions ; Dissolution ; Dissolving ; Dolomite ; Dolostone ; Earth and Environmental Science ; Earth Sciences ; Evolution ; Flow mapping ; Flow system ; Fractionation ; Geochemistry ; Geology ; Geophysics/Geodesy ; Groundwater ; Groundwater flow ; Gypsum ; Heterogeneity ; Hydraulic conductivity ; Hydrochemicals ; Hydrogeochemistry ; Hydrogeology ; Hydrology/Water Resources ; Isotope fractionation ; Isotopes ; Karst ; Modelling ; One dimensional models ; Oxidoreductions ; Parameters ; Porosity ; Recharge ; Recharge areas ; Redox reactions ; Simulation ; Sulfur isotopes ; Sulphur ; Terrain ; Transport ; Trends ; Waste Water Technology ; Water Management ; Water Pollution Control ; Water Quality/Water Pollution</subject><ispartof>Hydrogeology journal, 2023-03, Vol.31 (2), p.435-452</ispartof><rights>The Author(s), under exclusive licence to International Association of Hydrogeologists 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-6e38636886100a699e46930d2a537e88cd1327fdcc4754f13836679eee7686133</cites><orcidid>0000-0002-3292-6073</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10040-022-02568-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10040-022-02568-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Priebe, E. H.</creatorcontrib><creatorcontrib>Amos, R. T.</creatorcontrib><creatorcontrib>Jackson, R. E.</creatorcontrib><creatorcontrib>Rudolph, D. L.</creatorcontrib><title>Regional-scale reactive transport modelling of hydrogeochemical evolution in a karstic carbonate aquifer</title><title>Hydrogeology journal</title><addtitle>Hydrogeol J</addtitle><description>A regional-scale reactive transport model is used to conduct a quantitative assessment of the chemical and isotopic processes that form a conceptual model of geochemical evolution. The primary geochemical reactions described in the conceptual model are incongruent dolomite and gypsum dissolution followed by a series of redox reactions and sulphur isotope fractionation with closed-to-atmosphere groundwater evolution. The investigated aquifer comprises karstic carbonate bedrock with a hydraulic conductivity (
K
) range spanning several orders of magnitude. Hydrochemical evolution was simulated with a fully saturated one-dimensional model using the multicomponent reactive transport code MIN3P. Five steady -state model scenarios representing the known range of
K
and porosity simulate geochemical and isotopic evolution along a hypothetical 50-km flowpath. Simulation results are compared with sparse field observations along the flowpath. Although field observations show similar trend directions for all parameters, the magnitude of these trends varies due to differences in residence times. The model results bracket the field observations well for all parameters, except for Mg, and thus these results confirm that variability in field trends can be attributed to physical heterogeneity. The good agreement between models and field observations demonstrates that the geochemical and isotopic processes forming the conceptual model can be quantitatively reproduced. This supports water management activities by establishing hydrochemical end members that may be used to constrain recharge area mapping, assess flow zone continuity and identify areas of older evolved waters. These results also support the use of reactive transport models for quantifying chemical processes in regional-scale groundwater flow systems.</description><subject>Aquatic Pollution</subject><subject>Aquifers</subject><subject>Atmospheric evolution</subject><subject>Atmospheric models</subject><subject>Bedrock</subject><subject>Carbonates</subject><subject>Cartography</subject><subject>Chemical reactions</subject><subject>Dissolution</subject><subject>Dissolving</subject><subject>Dolomite</subject><subject>Dolostone</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Evolution</subject><subject>Flow mapping</subject><subject>Flow system</subject><subject>Fractionation</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Groundwater</subject><subject>Groundwater flow</subject><subject>Gypsum</subject><subject>Heterogeneity</subject><subject>Hydraulic conductivity</subject><subject>Hydrochemicals</subject><subject>Hydrogeochemistry</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Isotope fractionation</subject><subject>Isotopes</subject><subject>Karst</subject><subject>Modelling</subject><subject>One dimensional models</subject><subject>Oxidoreductions</subject><subject>Parameters</subject><subject>Porosity</subject><subject>Recharge</subject><subject>Recharge areas</subject><subject>Redox reactions</subject><subject>Simulation</subject><subject>Sulfur isotopes</subject><subject>Sulphur</subject><subject>Terrain</subject><subject>Transport</subject><subject>Trends</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>Water Quality/Water Pollution</subject><issn>1431-2174</issn><issn>1435-0157</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEURQdRsFb_gKuA62i-JskspfgFBUF0HWLmzTR1OmmTmUL_vbEjuHPx8rK458C7RXFNyS0lRN2l_AqCCWN5SqmxOClmVPASE1qq0-OfYkaVOC8uUlqTHKeKz4rVG7Q-9LbDydkOUATrBr8HNETbp22IA9qEGrrO9y0KDVod6hhaCG4FG58JBPvQjUNWIN8ji75sTIN3yNn4mbUDILsbfQPxsjhrbJfg6nfPi4_Hh_fFM16-Pr0s7pfYMUUGLIFryaXWMl9kZVWBkBUnNbMlV6C1qylnqqmdE6oUDeWaS6kqAFAyM5zPi5vJu41hN0IazDqMMR-YDFO60rrM-pxiU8rFkFKExmyj39h4MJSYn0bN1KjJjZpjo0ZkiE9QyuG-hfin_of6Bj96eWg</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Priebe, E. H.</creator><creator>Amos, R. T.</creator><creator>Jackson, R. E.</creator><creator>Rudolph, D. L.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-3292-6073</orcidid></search><sort><creationdate>20230301</creationdate><title>Regional-scale reactive transport modelling of hydrogeochemical evolution in a karstic carbonate aquifer</title><author>Priebe, E. H. ; Amos, R. T. ; Jackson, R. E. ; Rudolph, D. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-6e38636886100a699e46930d2a537e88cd1327fdcc4754f13836679eee7686133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aquatic Pollution</topic><topic>Aquifers</topic><topic>Atmospheric evolution</topic><topic>Atmospheric models</topic><topic>Bedrock</topic><topic>Carbonates</topic><topic>Cartography</topic><topic>Chemical reactions</topic><topic>Dissolution</topic><topic>Dissolving</topic><topic>Dolomite</topic><topic>Dolostone</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Evolution</topic><topic>Flow mapping</topic><topic>Flow system</topic><topic>Fractionation</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Groundwater</topic><topic>Groundwater flow</topic><topic>Gypsum</topic><topic>Heterogeneity</topic><topic>Hydraulic conductivity</topic><topic>Hydrochemicals</topic><topic>Hydrogeochemistry</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Isotope fractionation</topic><topic>Isotopes</topic><topic>Karst</topic><topic>Modelling</topic><topic>One dimensional models</topic><topic>Oxidoreductions</topic><topic>Parameters</topic><topic>Porosity</topic><topic>Recharge</topic><topic>Recharge areas</topic><topic>Redox reactions</topic><topic>Simulation</topic><topic>Sulfur isotopes</topic><topic>Sulphur</topic><topic>Terrain</topic><topic>Transport</topic><topic>Trends</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>Water Quality/Water Pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Priebe, E. H.</creatorcontrib><creatorcontrib>Amos, R. T.</creatorcontrib><creatorcontrib>Jackson, R. E.</creatorcontrib><creatorcontrib>Rudolph, D. L.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Hydrogeology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Priebe, E. H.</au><au>Amos, R. T.</au><au>Jackson, R. E.</au><au>Rudolph, D. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regional-scale reactive transport modelling of hydrogeochemical evolution in a karstic carbonate aquifer</atitle><jtitle>Hydrogeology journal</jtitle><stitle>Hydrogeol J</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>31</volume><issue>2</issue><spage>435</spage><epage>452</epage><pages>435-452</pages><issn>1431-2174</issn><eissn>1435-0157</eissn><abstract>A regional-scale reactive transport model is used to conduct a quantitative assessment of the chemical and isotopic processes that form a conceptual model of geochemical evolution. The primary geochemical reactions described in the conceptual model are incongruent dolomite and gypsum dissolution followed by a series of redox reactions and sulphur isotope fractionation with closed-to-atmosphere groundwater evolution. The investigated aquifer comprises karstic carbonate bedrock with a hydraulic conductivity (
K
) range spanning several orders of magnitude. Hydrochemical evolution was simulated with a fully saturated one-dimensional model using the multicomponent reactive transport code MIN3P. Five steady -state model scenarios representing the known range of
K
and porosity simulate geochemical and isotopic evolution along a hypothetical 50-km flowpath. Simulation results are compared with sparse field observations along the flowpath. Although field observations show similar trend directions for all parameters, the magnitude of these trends varies due to differences in residence times. The model results bracket the field observations well for all parameters, except for Mg, and thus these results confirm that variability in field trends can be attributed to physical heterogeneity. The good agreement between models and field observations demonstrates that the geochemical and isotopic processes forming the conceptual model can be quantitatively reproduced. This supports water management activities by establishing hydrochemical end members that may be used to constrain recharge area mapping, assess flow zone continuity and identify areas of older evolved waters. These results also support the use of reactive transport models for quantifying chemical processes in regional-scale groundwater flow systems.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10040-022-02568-4</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-3292-6073</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1431-2174 |
ispartof | Hydrogeology journal, 2023-03, Vol.31 (2), p.435-452 |
issn | 1431-2174 1435-0157 |
language | eng |
recordid | cdi_proquest_journals_2789885636 |
source | SpringerLink Journals |
subjects | Aquatic Pollution Aquifers Atmospheric evolution Atmospheric models Bedrock Carbonates Cartography Chemical reactions Dissolution Dissolving Dolomite Dolostone Earth and Environmental Science Earth Sciences Evolution Flow mapping Flow system Fractionation Geochemistry Geology Geophysics/Geodesy Groundwater Groundwater flow Gypsum Heterogeneity Hydraulic conductivity Hydrochemicals Hydrogeochemistry Hydrogeology Hydrology/Water Resources Isotope fractionation Isotopes Karst Modelling One dimensional models Oxidoreductions Parameters Porosity Recharge Recharge areas Redox reactions Simulation Sulfur isotopes Sulphur Terrain Transport Trends Waste Water Technology Water Management Water Pollution Control Water Quality/Water Pollution |
title | Regional-scale reactive transport modelling of hydrogeochemical evolution in a karstic carbonate aquifer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A05%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regional-scale%20reactive%20transport%20modelling%20of%20hydrogeochemical%20evolution%20in%20a%20karstic%20carbonate%20aquifer&rft.jtitle=Hydrogeology%20journal&rft.au=Priebe,%20E.%20H.&rft.date=2023-03-01&rft.volume=31&rft.issue=2&rft.spage=435&rft.epage=452&rft.pages=435-452&rft.issn=1431-2174&rft.eissn=1435-0157&rft_id=info:doi/10.1007/s10040-022-02568-4&rft_dat=%3Cproquest_cross%3E2789885636%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2789885636&rft_id=info:pmid/&rfr_iscdi=true |