A reinforcement learning approach to competitive ordering and pricing problem

This study analyses simultaneous ordering and pricing decisions for retailers working in a multi‐retailer competitive environment for an infinite horizon. Retailers compete for the same market where the market demand is uncertain. The customer selects the winning agent (retailer) in each term on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems 2015-02, Vol.32 (1), p.39-48
Hauptverfasser: Dogan, Ibrahim, Güner, Ali R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48
container_issue 1
container_start_page 39
container_title Expert systems
container_volume 32
creator Dogan, Ibrahim
Güner, Ali R.
description This study analyses simultaneous ordering and pricing decisions for retailers working in a multi‐retailer competitive environment for an infinite horizon. Retailers compete for the same market where the market demand is uncertain. The customer selects the winning agent (retailer) in each term on the basis of random utility maximization, which depends primarily on retailer price and random error. The complexity of the problem is increased by competitiveness, necessity for simultaneous decisions and uncertainty in the nature of increases, and is not conducive to examination using standard analytical methods. Therefore, we model the problem using reinforcement learning (RL), which is founded on stochastic dynamic programming and agent‐based simulations. We analyse the effects of competitiveness and performance of RL on three different scenarios: a monopolistic case where one retailer employing a RL agent maximizes its profit, a duopolistic case where one retailer employs RL and another utilizes adaptive pricing and ordering policies, and a duopolistic case where both retailers employ RL.
doi_str_mv 10.1111/exsy.12054
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2789869370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3582047491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4004-f6405bdc2b127f77366d30a0368b2a79da743bb02e2236f00b52a81b86522c403</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqVw4RdE4oaUsn7ETo5V1QeohQNFQC-WnTiQkkdxUmj_PW4DHLuX3cM3M9pB6BJDD7u5MZt628MEAnaEOpjx0AcasWPUAcK5zwSBU3RW10sAwELwDpr1PWuyMq1sbApTNl5ulC2z8s1Tq5WtVPzuNZUXV8XKNFmTfRmvsomxe6BMvJXN4t3tUJ2b4hydpCqvzcXv7qKn0XA-mPjTh_HtoD_1YwbA_JQzCHQSE42JSIWgnCcUFFAeaqJElCjBqNZADCGUpwA6ICrEOuQBIc6CdtFV6-tyP9embuSyWtvSRUoiwijkERUHKcwDHAWUE-ao65aKbVXX1qTSPVUou5UY5K5UuStV7kt1MG7h7yw32wOkHL48vv5p_FaT1Y3Z_GuU_ZBcUBHI5_uxXMwni9H8LpAz-gP3NYfX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651953624</pqid></control><display><type>article</type><title>A reinforcement learning approach to competitive ordering and pricing problem</title><source>EBSCOhost Business Source Complete</source><source>Access via Wiley Online Library</source><creator>Dogan, Ibrahim ; Güner, Ali R.</creator><creatorcontrib>Dogan, Ibrahim ; Güner, Ali R.</creatorcontrib><description>This study analyses simultaneous ordering and pricing decisions for retailers working in a multi‐retailer competitive environment for an infinite horizon. Retailers compete for the same market where the market demand is uncertain. The customer selects the winning agent (retailer) in each term on the basis of random utility maximization, which depends primarily on retailer price and random error. The complexity of the problem is increased by competitiveness, necessity for simultaneous decisions and uncertainty in the nature of increases, and is not conducive to examination using standard analytical methods. Therefore, we model the problem using reinforcement learning (RL), which is founded on stochastic dynamic programming and agent‐based simulations. We analyse the effects of competitiveness and performance of RL on three different scenarios: a monopolistic case where one retailer employing a RL agent maximizes its profit, a duopolistic case where one retailer employs RL and another utilizes adaptive pricing and ordering policies, and a duopolistic case where both retailers employ RL.</description><identifier>ISSN: 0266-4720</identifier><identifier>EISSN: 1468-0394</identifier><identifier>DOI: 10.1111/exsy.12054</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>agent-based simulation ; Analysis ; Decision analysis ; Decision support systems ; Duopoly ; Dynamic programming ; Expert systems ; Pricing ; Pricing policies ; Purchasing ; Random errors ; reinforcement learning ; Retail stores ; Retailing industry ; Studies ; supply chain ; Supply chains</subject><ispartof>Expert systems, 2015-02, Vol.32 (1), p.39-48</ispartof><rights>2013 Wiley Publishing Ltd</rights><rights>Copyright © 2015 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4004-f6405bdc2b127f77366d30a0368b2a79da743bb02e2236f00b52a81b86522c403</citedby><cites>FETCH-LOGICAL-c4004-f6405bdc2b127f77366d30a0368b2a79da743bb02e2236f00b52a81b86522c403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fexsy.12054$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fexsy.12054$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Dogan, Ibrahim</creatorcontrib><creatorcontrib>Güner, Ali R.</creatorcontrib><title>A reinforcement learning approach to competitive ordering and pricing problem</title><title>Expert systems</title><addtitle>Expert Systems</addtitle><description>This study analyses simultaneous ordering and pricing decisions for retailers working in a multi‐retailer competitive environment for an infinite horizon. Retailers compete for the same market where the market demand is uncertain. The customer selects the winning agent (retailer) in each term on the basis of random utility maximization, which depends primarily on retailer price and random error. The complexity of the problem is increased by competitiveness, necessity for simultaneous decisions and uncertainty in the nature of increases, and is not conducive to examination using standard analytical methods. Therefore, we model the problem using reinforcement learning (RL), which is founded on stochastic dynamic programming and agent‐based simulations. We analyse the effects of competitiveness and performance of RL on three different scenarios: a monopolistic case where one retailer employing a RL agent maximizes its profit, a duopolistic case where one retailer employs RL and another utilizes adaptive pricing and ordering policies, and a duopolistic case where both retailers employ RL.</description><subject>agent-based simulation</subject><subject>Analysis</subject><subject>Decision analysis</subject><subject>Decision support systems</subject><subject>Duopoly</subject><subject>Dynamic programming</subject><subject>Expert systems</subject><subject>Pricing</subject><subject>Pricing policies</subject><subject>Purchasing</subject><subject>Random errors</subject><subject>reinforcement learning</subject><subject>Retail stores</subject><subject>Retailing industry</subject><subject>Studies</subject><subject>supply chain</subject><subject>Supply chains</subject><issn>0266-4720</issn><issn>1468-0394</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqVw4RdE4oaUsn7ETo5V1QeohQNFQC-WnTiQkkdxUmj_PW4DHLuX3cM3M9pB6BJDD7u5MZt628MEAnaEOpjx0AcasWPUAcK5zwSBU3RW10sAwELwDpr1PWuyMq1sbApTNl5ulC2z8s1Tq5WtVPzuNZUXV8XKNFmTfRmvsomxe6BMvJXN4t3tUJ2b4hydpCqvzcXv7qKn0XA-mPjTh_HtoD_1YwbA_JQzCHQSE42JSIWgnCcUFFAeaqJElCjBqNZADCGUpwA6ICrEOuQBIc6CdtFV6-tyP9embuSyWtvSRUoiwijkERUHKcwDHAWUE-ao65aKbVXX1qTSPVUou5UY5K5UuStV7kt1MG7h7yw32wOkHL48vv5p_FaT1Y3Z_GuU_ZBcUBHI5_uxXMwni9H8LpAz-gP3NYfX</recordid><startdate>201502</startdate><enddate>201502</enddate><creator>Dogan, Ibrahim</creator><creator>Güner, Ali R.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201502</creationdate><title>A reinforcement learning approach to competitive ordering and pricing problem</title><author>Dogan, Ibrahim ; Güner, Ali R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4004-f6405bdc2b127f77366d30a0368b2a79da743bb02e2236f00b52a81b86522c403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>agent-based simulation</topic><topic>Analysis</topic><topic>Decision analysis</topic><topic>Decision support systems</topic><topic>Duopoly</topic><topic>Dynamic programming</topic><topic>Expert systems</topic><topic>Pricing</topic><topic>Pricing policies</topic><topic>Purchasing</topic><topic>Random errors</topic><topic>reinforcement learning</topic><topic>Retail stores</topic><topic>Retailing industry</topic><topic>Studies</topic><topic>supply chain</topic><topic>Supply chains</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dogan, Ibrahim</creatorcontrib><creatorcontrib>Güner, Ali R.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dogan, Ibrahim</au><au>Güner, Ali R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A reinforcement learning approach to competitive ordering and pricing problem</atitle><jtitle>Expert systems</jtitle><addtitle>Expert Systems</addtitle><date>2015-02</date><risdate>2015</risdate><volume>32</volume><issue>1</issue><spage>39</spage><epage>48</epage><pages>39-48</pages><issn>0266-4720</issn><eissn>1468-0394</eissn><abstract>This study analyses simultaneous ordering and pricing decisions for retailers working in a multi‐retailer competitive environment for an infinite horizon. Retailers compete for the same market where the market demand is uncertain. The customer selects the winning agent (retailer) in each term on the basis of random utility maximization, which depends primarily on retailer price and random error. The complexity of the problem is increased by competitiveness, necessity for simultaneous decisions and uncertainty in the nature of increases, and is not conducive to examination using standard analytical methods. Therefore, we model the problem using reinforcement learning (RL), which is founded on stochastic dynamic programming and agent‐based simulations. We analyse the effects of competitiveness and performance of RL on three different scenarios: a monopolistic case where one retailer employing a RL agent maximizes its profit, a duopolistic case where one retailer employs RL and another utilizes adaptive pricing and ordering policies, and a duopolistic case where both retailers employ RL.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/exsy.12054</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0266-4720
ispartof Expert systems, 2015-02, Vol.32 (1), p.39-48
issn 0266-4720
1468-0394
language eng
recordid cdi_proquest_journals_2789869370
source EBSCOhost Business Source Complete; Access via Wiley Online Library
subjects agent-based simulation
Analysis
Decision analysis
Decision support systems
Duopoly
Dynamic programming
Expert systems
Pricing
Pricing policies
Purchasing
Random errors
reinforcement learning
Retail stores
Retailing industry
Studies
supply chain
Supply chains
title A reinforcement learning approach to competitive ordering and pricing problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A19%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20reinforcement%20learning%20approach%20to%20competitive%20ordering%20and%20pricing%20problem&rft.jtitle=Expert%20systems&rft.au=Dogan,%20Ibrahim&rft.date=2015-02&rft.volume=32&rft.issue=1&rft.spage=39&rft.epage=48&rft.pages=39-48&rft.issn=0266-4720&rft.eissn=1468-0394&rft_id=info:doi/10.1111/exsy.12054&rft_dat=%3Cproquest_cross%3E3582047491%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651953624&rft_id=info:pmid/&rfr_iscdi=true