Automated deep learning segmentation of high-resolution 7 T postmortem MRI for quantitative analysis of structure-pathology correlations in neurodegenerative diseases
Postmortem MRI allows brain anatomy to be examined at high resolution and to link pathology measures with morphometric measurements. However, automated segmentation methods for brain mapping in postmortem MRI are not well developed, primarily due to limited availability of labeled datasets, and hete...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-10 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Khandelwal, Pulkit Michael Tran Duong Sadaghiani, Shokufeh Lim, Sydney Denning, Amanda Chung, Eunice Ravikumar, Sadhana Arezoumandan, Sanaz Peterson, Claire Madigan Bedard Capp, Noah Ittyerah, Ranjit Migdal, Elyse Choi, Grace Kopp, Emily Loja, Bridget Eusha Hasan Li, Jiacheng Bahena, Alejandra Prabhakaran, Karthik Mizsei, Gabor Gabrielyan, Marianna Schuck, Theresa Trotman, Winifred Robinson, John Ohm, Daniel Lee, Edward B Trojanowski, John Q McMillan, Corey Grossman, Murray Irwin, David J Detre, John Tisdall, M Dylan Das, Sandhitsu R Wisse, Laura E M Wolk, David A Yushkevich, Paul A |
description | Postmortem MRI allows brain anatomy to be examined at high resolution and to link pathology measures with morphometric measurements. However, automated segmentation methods for brain mapping in postmortem MRI are not well developed, primarily due to limited availability of labeled datasets, and heterogeneity in scanner hardware and acquisition protocols. In this work, we present a high resolution of 135 postmortem human brain tissue specimens imaged at 0.3 mm\(^{3}\) isotropic using a T2w sequence on a 7T whole-body MRI scanner. We developed a deep learning pipeline to segment the cortical mantle by benchmarking the performance of nine deep neural architectures, followed by post-hoc topological correction. We then segment four subcortical structures (caudate, putamen, globus pallidus, and thalamus), white matter hyperintensities, and the normal appearing white matter. We show generalizing capabilities across whole brain hemispheres in different specimens, and also on unseen images acquired at 0.28 mm^3 and 0.16 mm^3 isotropic T2*w FLASH sequence at 7T. We then compute localized cortical thickness and volumetric measurements across key regions, and link them with semi-quantitative neuropathological ratings. Our code, Jupyter notebooks, and the containerized executables are publicly available at: https://pulkit-khandelwal.github.io/exvivo-brain-upenn |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2789867405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2789867405</sourcerecordid><originalsourceid>FETCH-proquest_journals_27898674053</originalsourceid><addsrcrecordid>eNqNjUFqwzAQRUWgkNDmDgNdG1w5jt1lCCntopuSfRDxWFaQNc7MqJAL9Zxt0h6gqw-f__6bmYWtqqeiXVk7N0uRU1mWdt3Yuq4W5muTlUan2EGHOEFExykkD4J-xKROAyWgHobgh4JRKOZb1cAeJhIdiRVHeP94g54YztklDVfsE8ElFy8S5MqLcj5qZiwmpwNF8hc4EjPGm0IgJEiYmTr0mJB_H7og6ATlwdz1Lgou__LePL7s9tvXYmI6ZxQ9nCjzj04Otmmf23WzKuvqf6tvgRBhKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789867405</pqid></control><display><type>article</type><title>Automated deep learning segmentation of high-resolution 7 T postmortem MRI for quantitative analysis of structure-pathology correlations in neurodegenerative diseases</title><source>Free E- Journals</source><creator>Khandelwal, Pulkit ; Michael Tran Duong ; Sadaghiani, Shokufeh ; Lim, Sydney ; Denning, Amanda ; Chung, Eunice ; Ravikumar, Sadhana ; Arezoumandan, Sanaz ; Peterson, Claire ; Madigan Bedard ; Capp, Noah ; Ittyerah, Ranjit ; Migdal, Elyse ; Choi, Grace ; Kopp, Emily ; Loja, Bridget ; Eusha Hasan ; Li, Jiacheng ; Bahena, Alejandra ; Prabhakaran, Karthik ; Mizsei, Gabor ; Gabrielyan, Marianna ; Schuck, Theresa ; Trotman, Winifred ; Robinson, John ; Ohm, Daniel ; Lee, Edward B ; Trojanowski, John Q ; McMillan, Corey ; Grossman, Murray ; Irwin, David J ; Detre, John ; Tisdall, M Dylan ; Das, Sandhitsu R ; Wisse, Laura E M ; Wolk, David A ; Yushkevich, Paul A</creator><creatorcontrib>Khandelwal, Pulkit ; Michael Tran Duong ; Sadaghiani, Shokufeh ; Lim, Sydney ; Denning, Amanda ; Chung, Eunice ; Ravikumar, Sadhana ; Arezoumandan, Sanaz ; Peterson, Claire ; Madigan Bedard ; Capp, Noah ; Ittyerah, Ranjit ; Migdal, Elyse ; Choi, Grace ; Kopp, Emily ; Loja, Bridget ; Eusha Hasan ; Li, Jiacheng ; Bahena, Alejandra ; Prabhakaran, Karthik ; Mizsei, Gabor ; Gabrielyan, Marianna ; Schuck, Theresa ; Trotman, Winifred ; Robinson, John ; Ohm, Daniel ; Lee, Edward B ; Trojanowski, John Q ; McMillan, Corey ; Grossman, Murray ; Irwin, David J ; Detre, John ; Tisdall, M Dylan ; Das, Sandhitsu R ; Wisse, Laura E M ; Wolk, David A ; Yushkevich, Paul A</creatorcontrib><description>Postmortem MRI allows brain anatomy to be examined at high resolution and to link pathology measures with morphometric measurements. However, automated segmentation methods for brain mapping in postmortem MRI are not well developed, primarily due to limited availability of labeled datasets, and heterogeneity in scanner hardware and acquisition protocols. In this work, we present a high resolution of 135 postmortem human brain tissue specimens imaged at 0.3 mm\(^{3}\) isotropic using a T2w sequence on a 7T whole-body MRI scanner. We developed a deep learning pipeline to segment the cortical mantle by benchmarking the performance of nine deep neural architectures, followed by post-hoc topological correction. We then segment four subcortical structures (caudate, putamen, globus pallidus, and thalamus), white matter hyperintensities, and the normal appearing white matter. We show generalizing capabilities across whole brain hemispheres in different specimens, and also on unseen images acquired at 0.28 mm^3 and 0.16 mm^3 isotropic T2*w FLASH sequence at 7T. We then compute localized cortical thickness and volumetric measurements across key regions, and link them with semi-quantitative neuropathological ratings. Our code, Jupyter notebooks, and the containerized executables are publicly available at: https://pulkit-khandelwal.github.io/exvivo-brain-upenn</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Automation ; Availability ; Brain ; Datasets ; Deep learning ; Heterogeneity ; High resolution ; Histology ; Image acquisition ; Image segmentation ; Magnetic resonance imaging ; Quantitative analysis ; Scanners ; Thalamus ; Thickness measurement</subject><ispartof>arXiv.org, 2023-10</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Khandelwal, Pulkit</creatorcontrib><creatorcontrib>Michael Tran Duong</creatorcontrib><creatorcontrib>Sadaghiani, Shokufeh</creatorcontrib><creatorcontrib>Lim, Sydney</creatorcontrib><creatorcontrib>Denning, Amanda</creatorcontrib><creatorcontrib>Chung, Eunice</creatorcontrib><creatorcontrib>Ravikumar, Sadhana</creatorcontrib><creatorcontrib>Arezoumandan, Sanaz</creatorcontrib><creatorcontrib>Peterson, Claire</creatorcontrib><creatorcontrib>Madigan Bedard</creatorcontrib><creatorcontrib>Capp, Noah</creatorcontrib><creatorcontrib>Ittyerah, Ranjit</creatorcontrib><creatorcontrib>Migdal, Elyse</creatorcontrib><creatorcontrib>Choi, Grace</creatorcontrib><creatorcontrib>Kopp, Emily</creatorcontrib><creatorcontrib>Loja, Bridget</creatorcontrib><creatorcontrib>Eusha Hasan</creatorcontrib><creatorcontrib>Li, Jiacheng</creatorcontrib><creatorcontrib>Bahena, Alejandra</creatorcontrib><creatorcontrib>Prabhakaran, Karthik</creatorcontrib><creatorcontrib>Mizsei, Gabor</creatorcontrib><creatorcontrib>Gabrielyan, Marianna</creatorcontrib><creatorcontrib>Schuck, Theresa</creatorcontrib><creatorcontrib>Trotman, Winifred</creatorcontrib><creatorcontrib>Robinson, John</creatorcontrib><creatorcontrib>Ohm, Daniel</creatorcontrib><creatorcontrib>Lee, Edward B</creatorcontrib><creatorcontrib>Trojanowski, John Q</creatorcontrib><creatorcontrib>McMillan, Corey</creatorcontrib><creatorcontrib>Grossman, Murray</creatorcontrib><creatorcontrib>Irwin, David J</creatorcontrib><creatorcontrib>Detre, John</creatorcontrib><creatorcontrib>Tisdall, M Dylan</creatorcontrib><creatorcontrib>Das, Sandhitsu R</creatorcontrib><creatorcontrib>Wisse, Laura E M</creatorcontrib><creatorcontrib>Wolk, David A</creatorcontrib><creatorcontrib>Yushkevich, Paul A</creatorcontrib><title>Automated deep learning segmentation of high-resolution 7 T postmortem MRI for quantitative analysis of structure-pathology correlations in neurodegenerative diseases</title><title>arXiv.org</title><description>Postmortem MRI allows brain anatomy to be examined at high resolution and to link pathology measures with morphometric measurements. However, automated segmentation methods for brain mapping in postmortem MRI are not well developed, primarily due to limited availability of labeled datasets, and heterogeneity in scanner hardware and acquisition protocols. In this work, we present a high resolution of 135 postmortem human brain tissue specimens imaged at 0.3 mm\(^{3}\) isotropic using a T2w sequence on a 7T whole-body MRI scanner. We developed a deep learning pipeline to segment the cortical mantle by benchmarking the performance of nine deep neural architectures, followed by post-hoc topological correction. We then segment four subcortical structures (caudate, putamen, globus pallidus, and thalamus), white matter hyperintensities, and the normal appearing white matter. We show generalizing capabilities across whole brain hemispheres in different specimens, and also on unseen images acquired at 0.28 mm^3 and 0.16 mm^3 isotropic T2*w FLASH sequence at 7T. We then compute localized cortical thickness and volumetric measurements across key regions, and link them with semi-quantitative neuropathological ratings. Our code, Jupyter notebooks, and the containerized executables are publicly available at: https://pulkit-khandelwal.github.io/exvivo-brain-upenn</description><subject>Automation</subject><subject>Availability</subject><subject>Brain</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Heterogeneity</subject><subject>High resolution</subject><subject>Histology</subject><subject>Image acquisition</subject><subject>Image segmentation</subject><subject>Magnetic resonance imaging</subject><subject>Quantitative analysis</subject><subject>Scanners</subject><subject>Thalamus</subject><subject>Thickness measurement</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjUFqwzAQRUWgkNDmDgNdG1w5jt1lCCntopuSfRDxWFaQNc7MqJAL9Zxt0h6gqw-f__6bmYWtqqeiXVk7N0uRU1mWdt3Yuq4W5muTlUan2EGHOEFExykkD4J-xKROAyWgHobgh4JRKOZb1cAeJhIdiRVHeP94g54YztklDVfsE8ElFy8S5MqLcj5qZiwmpwNF8hc4EjPGm0IgJEiYmTr0mJB_H7og6ATlwdz1Lgou__LePL7s9tvXYmI6ZxQ9nCjzj04Otmmf23WzKuvqf6tvgRBhKw</recordid><startdate>20231017</startdate><enddate>20231017</enddate><creator>Khandelwal, Pulkit</creator><creator>Michael Tran Duong</creator><creator>Sadaghiani, Shokufeh</creator><creator>Lim, Sydney</creator><creator>Denning, Amanda</creator><creator>Chung, Eunice</creator><creator>Ravikumar, Sadhana</creator><creator>Arezoumandan, Sanaz</creator><creator>Peterson, Claire</creator><creator>Madigan Bedard</creator><creator>Capp, Noah</creator><creator>Ittyerah, Ranjit</creator><creator>Migdal, Elyse</creator><creator>Choi, Grace</creator><creator>Kopp, Emily</creator><creator>Loja, Bridget</creator><creator>Eusha Hasan</creator><creator>Li, Jiacheng</creator><creator>Bahena, Alejandra</creator><creator>Prabhakaran, Karthik</creator><creator>Mizsei, Gabor</creator><creator>Gabrielyan, Marianna</creator><creator>Schuck, Theresa</creator><creator>Trotman, Winifred</creator><creator>Robinson, John</creator><creator>Ohm, Daniel</creator><creator>Lee, Edward B</creator><creator>Trojanowski, John Q</creator><creator>McMillan, Corey</creator><creator>Grossman, Murray</creator><creator>Irwin, David J</creator><creator>Detre, John</creator><creator>Tisdall, M Dylan</creator><creator>Das, Sandhitsu R</creator><creator>Wisse, Laura E M</creator><creator>Wolk, David A</creator><creator>Yushkevich, Paul A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231017</creationdate><title>Automated deep learning segmentation of high-resolution 7 T postmortem MRI for quantitative analysis of structure-pathology correlations in neurodegenerative diseases</title><author>Khandelwal, Pulkit ; Michael Tran Duong ; Sadaghiani, Shokufeh ; Lim, Sydney ; Denning, Amanda ; Chung, Eunice ; Ravikumar, Sadhana ; Arezoumandan, Sanaz ; Peterson, Claire ; Madigan Bedard ; Capp, Noah ; Ittyerah, Ranjit ; Migdal, Elyse ; Choi, Grace ; Kopp, Emily ; Loja, Bridget ; Eusha Hasan ; Li, Jiacheng ; Bahena, Alejandra ; Prabhakaran, Karthik ; Mizsei, Gabor ; Gabrielyan, Marianna ; Schuck, Theresa ; Trotman, Winifred ; Robinson, John ; Ohm, Daniel ; Lee, Edward B ; Trojanowski, John Q ; McMillan, Corey ; Grossman, Murray ; Irwin, David J ; Detre, John ; Tisdall, M Dylan ; Das, Sandhitsu R ; Wisse, Laura E M ; Wolk, David A ; Yushkevich, Paul A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27898674053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Automation</topic><topic>Availability</topic><topic>Brain</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Heterogeneity</topic><topic>High resolution</topic><topic>Histology</topic><topic>Image acquisition</topic><topic>Image segmentation</topic><topic>Magnetic resonance imaging</topic><topic>Quantitative analysis</topic><topic>Scanners</topic><topic>Thalamus</topic><topic>Thickness measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Khandelwal, Pulkit</creatorcontrib><creatorcontrib>Michael Tran Duong</creatorcontrib><creatorcontrib>Sadaghiani, Shokufeh</creatorcontrib><creatorcontrib>Lim, Sydney</creatorcontrib><creatorcontrib>Denning, Amanda</creatorcontrib><creatorcontrib>Chung, Eunice</creatorcontrib><creatorcontrib>Ravikumar, Sadhana</creatorcontrib><creatorcontrib>Arezoumandan, Sanaz</creatorcontrib><creatorcontrib>Peterson, Claire</creatorcontrib><creatorcontrib>Madigan Bedard</creatorcontrib><creatorcontrib>Capp, Noah</creatorcontrib><creatorcontrib>Ittyerah, Ranjit</creatorcontrib><creatorcontrib>Migdal, Elyse</creatorcontrib><creatorcontrib>Choi, Grace</creatorcontrib><creatorcontrib>Kopp, Emily</creatorcontrib><creatorcontrib>Loja, Bridget</creatorcontrib><creatorcontrib>Eusha Hasan</creatorcontrib><creatorcontrib>Li, Jiacheng</creatorcontrib><creatorcontrib>Bahena, Alejandra</creatorcontrib><creatorcontrib>Prabhakaran, Karthik</creatorcontrib><creatorcontrib>Mizsei, Gabor</creatorcontrib><creatorcontrib>Gabrielyan, Marianna</creatorcontrib><creatorcontrib>Schuck, Theresa</creatorcontrib><creatorcontrib>Trotman, Winifred</creatorcontrib><creatorcontrib>Robinson, John</creatorcontrib><creatorcontrib>Ohm, Daniel</creatorcontrib><creatorcontrib>Lee, Edward B</creatorcontrib><creatorcontrib>Trojanowski, John Q</creatorcontrib><creatorcontrib>McMillan, Corey</creatorcontrib><creatorcontrib>Grossman, Murray</creatorcontrib><creatorcontrib>Irwin, David J</creatorcontrib><creatorcontrib>Detre, John</creatorcontrib><creatorcontrib>Tisdall, M Dylan</creatorcontrib><creatorcontrib>Das, Sandhitsu R</creatorcontrib><creatorcontrib>Wisse, Laura E M</creatorcontrib><creatorcontrib>Wolk, David A</creatorcontrib><creatorcontrib>Yushkevich, Paul A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khandelwal, Pulkit</au><au>Michael Tran Duong</au><au>Sadaghiani, Shokufeh</au><au>Lim, Sydney</au><au>Denning, Amanda</au><au>Chung, Eunice</au><au>Ravikumar, Sadhana</au><au>Arezoumandan, Sanaz</au><au>Peterson, Claire</au><au>Madigan Bedard</au><au>Capp, Noah</au><au>Ittyerah, Ranjit</au><au>Migdal, Elyse</au><au>Choi, Grace</au><au>Kopp, Emily</au><au>Loja, Bridget</au><au>Eusha Hasan</au><au>Li, Jiacheng</au><au>Bahena, Alejandra</au><au>Prabhakaran, Karthik</au><au>Mizsei, Gabor</au><au>Gabrielyan, Marianna</au><au>Schuck, Theresa</au><au>Trotman, Winifred</au><au>Robinson, John</au><au>Ohm, Daniel</au><au>Lee, Edward B</au><au>Trojanowski, John Q</au><au>McMillan, Corey</au><au>Grossman, Murray</au><au>Irwin, David J</au><au>Detre, John</au><au>Tisdall, M Dylan</au><au>Das, Sandhitsu R</au><au>Wisse, Laura E M</au><au>Wolk, David A</au><au>Yushkevich, Paul A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Automated deep learning segmentation of high-resolution 7 T postmortem MRI for quantitative analysis of structure-pathology correlations in neurodegenerative diseases</atitle><jtitle>arXiv.org</jtitle><date>2023-10-17</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Postmortem MRI allows brain anatomy to be examined at high resolution and to link pathology measures with morphometric measurements. However, automated segmentation methods for brain mapping in postmortem MRI are not well developed, primarily due to limited availability of labeled datasets, and heterogeneity in scanner hardware and acquisition protocols. In this work, we present a high resolution of 135 postmortem human brain tissue specimens imaged at 0.3 mm\(^{3}\) isotropic using a T2w sequence on a 7T whole-body MRI scanner. We developed a deep learning pipeline to segment the cortical mantle by benchmarking the performance of nine deep neural architectures, followed by post-hoc topological correction. We then segment four subcortical structures (caudate, putamen, globus pallidus, and thalamus), white matter hyperintensities, and the normal appearing white matter. We show generalizing capabilities across whole brain hemispheres in different specimens, and also on unseen images acquired at 0.28 mm^3 and 0.16 mm^3 isotropic T2*w FLASH sequence at 7T. We then compute localized cortical thickness and volumetric measurements across key regions, and link them with semi-quantitative neuropathological ratings. Our code, Jupyter notebooks, and the containerized executables are publicly available at: https://pulkit-khandelwal.github.io/exvivo-brain-upenn</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2789867405 |
source | Free E- Journals |
subjects | Automation Availability Brain Datasets Deep learning Heterogeneity High resolution Histology Image acquisition Image segmentation Magnetic resonance imaging Quantitative analysis Scanners Thalamus Thickness measurement |
title | Automated deep learning segmentation of high-resolution 7 T postmortem MRI for quantitative analysis of structure-pathology correlations in neurodegenerative diseases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T01%3A13%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Automated%20deep%20learning%20segmentation%20of%20high-resolution%207%20T%20postmortem%20MRI%20for%20quantitative%20analysis%20of%20structure-pathology%20correlations%20in%20neurodegenerative%20diseases&rft.jtitle=arXiv.org&rft.au=Khandelwal,%20Pulkit&rft.date=2023-10-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2789867405%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2789867405&rft_id=info:pmid/&rfr_iscdi=true |