Automated deep learning segmentation of high-resolution 7 T postmortem MRI for quantitative analysis of structure-pathology correlations in neurodegenerative diseases

Postmortem MRI allows brain anatomy to be examined at high resolution and to link pathology measures with morphometric measurements. However, automated segmentation methods for brain mapping in postmortem MRI are not well developed, primarily due to limited availability of labeled datasets, and hete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-10
Hauptverfasser: Khandelwal, Pulkit, Michael Tran Duong, Sadaghiani, Shokufeh, Lim, Sydney, Denning, Amanda, Chung, Eunice, Ravikumar, Sadhana, Arezoumandan, Sanaz, Peterson, Claire, Madigan Bedard, Capp, Noah, Ittyerah, Ranjit, Migdal, Elyse, Choi, Grace, Kopp, Emily, Loja, Bridget, Eusha Hasan, Li, Jiacheng, Bahena, Alejandra, Prabhakaran, Karthik, Mizsei, Gabor, Gabrielyan, Marianna, Schuck, Theresa, Trotman, Winifred, Robinson, John, Ohm, Daniel, Lee, Edward B, Trojanowski, John Q, McMillan, Corey, Grossman, Murray, Irwin, David J, Detre, John, Tisdall, M Dylan, Das, Sandhitsu R, Wisse, Laura E M, Wolk, David A, Yushkevich, Paul A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Khandelwal, Pulkit
Michael Tran Duong
Sadaghiani, Shokufeh
Lim, Sydney
Denning, Amanda
Chung, Eunice
Ravikumar, Sadhana
Arezoumandan, Sanaz
Peterson, Claire
Madigan Bedard
Capp, Noah
Ittyerah, Ranjit
Migdal, Elyse
Choi, Grace
Kopp, Emily
Loja, Bridget
Eusha Hasan
Li, Jiacheng
Bahena, Alejandra
Prabhakaran, Karthik
Mizsei, Gabor
Gabrielyan, Marianna
Schuck, Theresa
Trotman, Winifred
Robinson, John
Ohm, Daniel
Lee, Edward B
Trojanowski, John Q
McMillan, Corey
Grossman, Murray
Irwin, David J
Detre, John
Tisdall, M Dylan
Das, Sandhitsu R
Wisse, Laura E M
Wolk, David A
Yushkevich, Paul A
description Postmortem MRI allows brain anatomy to be examined at high resolution and to link pathology measures with morphometric measurements. However, automated segmentation methods for brain mapping in postmortem MRI are not well developed, primarily due to limited availability of labeled datasets, and heterogeneity in scanner hardware and acquisition protocols. In this work, we present a high resolution of 135 postmortem human brain tissue specimens imaged at 0.3 mm\(^{3}\) isotropic using a T2w sequence on a 7T whole-body MRI scanner. We developed a deep learning pipeline to segment the cortical mantle by benchmarking the performance of nine deep neural architectures, followed by post-hoc topological correction. We then segment four subcortical structures (caudate, putamen, globus pallidus, and thalamus), white matter hyperintensities, and the normal appearing white matter. We show generalizing capabilities across whole brain hemispheres in different specimens, and also on unseen images acquired at 0.28 mm^3 and 0.16 mm^3 isotropic T2*w FLASH sequence at 7T. We then compute localized cortical thickness and volumetric measurements across key regions, and link them with semi-quantitative neuropathological ratings. Our code, Jupyter notebooks, and the containerized executables are publicly available at: https://pulkit-khandelwal.github.io/exvivo-brain-upenn
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2789867405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2789867405</sourcerecordid><originalsourceid>FETCH-proquest_journals_27898674053</originalsourceid><addsrcrecordid>eNqNjUFqwzAQRUWgkNDmDgNdG1w5jt1lCCntopuSfRDxWFaQNc7MqJAL9Zxt0h6gqw-f__6bmYWtqqeiXVk7N0uRU1mWdt3Yuq4W5muTlUan2EGHOEFExykkD4J-xKROAyWgHobgh4JRKOZb1cAeJhIdiRVHeP94g54YztklDVfsE8ElFy8S5MqLcj5qZiwmpwNF8hc4EjPGm0IgJEiYmTr0mJB_H7og6ATlwdz1Lgou__LePL7s9tvXYmI6ZxQ9nCjzj04Otmmf23WzKuvqf6tvgRBhKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789867405</pqid></control><display><type>article</type><title>Automated deep learning segmentation of high-resolution 7 T postmortem MRI for quantitative analysis of structure-pathology correlations in neurodegenerative diseases</title><source>Free E- Journals</source><creator>Khandelwal, Pulkit ; Michael Tran Duong ; Sadaghiani, Shokufeh ; Lim, Sydney ; Denning, Amanda ; Chung, Eunice ; Ravikumar, Sadhana ; Arezoumandan, Sanaz ; Peterson, Claire ; Madigan Bedard ; Capp, Noah ; Ittyerah, Ranjit ; Migdal, Elyse ; Choi, Grace ; Kopp, Emily ; Loja, Bridget ; Eusha Hasan ; Li, Jiacheng ; Bahena, Alejandra ; Prabhakaran, Karthik ; Mizsei, Gabor ; Gabrielyan, Marianna ; Schuck, Theresa ; Trotman, Winifred ; Robinson, John ; Ohm, Daniel ; Lee, Edward B ; Trojanowski, John Q ; McMillan, Corey ; Grossman, Murray ; Irwin, David J ; Detre, John ; Tisdall, M Dylan ; Das, Sandhitsu R ; Wisse, Laura E M ; Wolk, David A ; Yushkevich, Paul A</creator><creatorcontrib>Khandelwal, Pulkit ; Michael Tran Duong ; Sadaghiani, Shokufeh ; Lim, Sydney ; Denning, Amanda ; Chung, Eunice ; Ravikumar, Sadhana ; Arezoumandan, Sanaz ; Peterson, Claire ; Madigan Bedard ; Capp, Noah ; Ittyerah, Ranjit ; Migdal, Elyse ; Choi, Grace ; Kopp, Emily ; Loja, Bridget ; Eusha Hasan ; Li, Jiacheng ; Bahena, Alejandra ; Prabhakaran, Karthik ; Mizsei, Gabor ; Gabrielyan, Marianna ; Schuck, Theresa ; Trotman, Winifred ; Robinson, John ; Ohm, Daniel ; Lee, Edward B ; Trojanowski, John Q ; McMillan, Corey ; Grossman, Murray ; Irwin, David J ; Detre, John ; Tisdall, M Dylan ; Das, Sandhitsu R ; Wisse, Laura E M ; Wolk, David A ; Yushkevich, Paul A</creatorcontrib><description>Postmortem MRI allows brain anatomy to be examined at high resolution and to link pathology measures with morphometric measurements. However, automated segmentation methods for brain mapping in postmortem MRI are not well developed, primarily due to limited availability of labeled datasets, and heterogeneity in scanner hardware and acquisition protocols. In this work, we present a high resolution of 135 postmortem human brain tissue specimens imaged at 0.3 mm\(^{3}\) isotropic using a T2w sequence on a 7T whole-body MRI scanner. We developed a deep learning pipeline to segment the cortical mantle by benchmarking the performance of nine deep neural architectures, followed by post-hoc topological correction. We then segment four subcortical structures (caudate, putamen, globus pallidus, and thalamus), white matter hyperintensities, and the normal appearing white matter. We show generalizing capabilities across whole brain hemispheres in different specimens, and also on unseen images acquired at 0.28 mm^3 and 0.16 mm^3 isotropic T2*w FLASH sequence at 7T. We then compute localized cortical thickness and volumetric measurements across key regions, and link them with semi-quantitative neuropathological ratings. Our code, Jupyter notebooks, and the containerized executables are publicly available at: https://pulkit-khandelwal.github.io/exvivo-brain-upenn</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Automation ; Availability ; Brain ; Datasets ; Deep learning ; Heterogeneity ; High resolution ; Histology ; Image acquisition ; Image segmentation ; Magnetic resonance imaging ; Quantitative analysis ; Scanners ; Thalamus ; Thickness measurement</subject><ispartof>arXiv.org, 2023-10</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Khandelwal, Pulkit</creatorcontrib><creatorcontrib>Michael Tran Duong</creatorcontrib><creatorcontrib>Sadaghiani, Shokufeh</creatorcontrib><creatorcontrib>Lim, Sydney</creatorcontrib><creatorcontrib>Denning, Amanda</creatorcontrib><creatorcontrib>Chung, Eunice</creatorcontrib><creatorcontrib>Ravikumar, Sadhana</creatorcontrib><creatorcontrib>Arezoumandan, Sanaz</creatorcontrib><creatorcontrib>Peterson, Claire</creatorcontrib><creatorcontrib>Madigan Bedard</creatorcontrib><creatorcontrib>Capp, Noah</creatorcontrib><creatorcontrib>Ittyerah, Ranjit</creatorcontrib><creatorcontrib>Migdal, Elyse</creatorcontrib><creatorcontrib>Choi, Grace</creatorcontrib><creatorcontrib>Kopp, Emily</creatorcontrib><creatorcontrib>Loja, Bridget</creatorcontrib><creatorcontrib>Eusha Hasan</creatorcontrib><creatorcontrib>Li, Jiacheng</creatorcontrib><creatorcontrib>Bahena, Alejandra</creatorcontrib><creatorcontrib>Prabhakaran, Karthik</creatorcontrib><creatorcontrib>Mizsei, Gabor</creatorcontrib><creatorcontrib>Gabrielyan, Marianna</creatorcontrib><creatorcontrib>Schuck, Theresa</creatorcontrib><creatorcontrib>Trotman, Winifred</creatorcontrib><creatorcontrib>Robinson, John</creatorcontrib><creatorcontrib>Ohm, Daniel</creatorcontrib><creatorcontrib>Lee, Edward B</creatorcontrib><creatorcontrib>Trojanowski, John Q</creatorcontrib><creatorcontrib>McMillan, Corey</creatorcontrib><creatorcontrib>Grossman, Murray</creatorcontrib><creatorcontrib>Irwin, David J</creatorcontrib><creatorcontrib>Detre, John</creatorcontrib><creatorcontrib>Tisdall, M Dylan</creatorcontrib><creatorcontrib>Das, Sandhitsu R</creatorcontrib><creatorcontrib>Wisse, Laura E M</creatorcontrib><creatorcontrib>Wolk, David A</creatorcontrib><creatorcontrib>Yushkevich, Paul A</creatorcontrib><title>Automated deep learning segmentation of high-resolution 7 T postmortem MRI for quantitative analysis of structure-pathology correlations in neurodegenerative diseases</title><title>arXiv.org</title><description>Postmortem MRI allows brain anatomy to be examined at high resolution and to link pathology measures with morphometric measurements. However, automated segmentation methods for brain mapping in postmortem MRI are not well developed, primarily due to limited availability of labeled datasets, and heterogeneity in scanner hardware and acquisition protocols. In this work, we present a high resolution of 135 postmortem human brain tissue specimens imaged at 0.3 mm\(^{3}\) isotropic using a T2w sequence on a 7T whole-body MRI scanner. We developed a deep learning pipeline to segment the cortical mantle by benchmarking the performance of nine deep neural architectures, followed by post-hoc topological correction. We then segment four subcortical structures (caudate, putamen, globus pallidus, and thalamus), white matter hyperintensities, and the normal appearing white matter. We show generalizing capabilities across whole brain hemispheres in different specimens, and also on unseen images acquired at 0.28 mm^3 and 0.16 mm^3 isotropic T2*w FLASH sequence at 7T. We then compute localized cortical thickness and volumetric measurements across key regions, and link them with semi-quantitative neuropathological ratings. Our code, Jupyter notebooks, and the containerized executables are publicly available at: https://pulkit-khandelwal.github.io/exvivo-brain-upenn</description><subject>Automation</subject><subject>Availability</subject><subject>Brain</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Heterogeneity</subject><subject>High resolution</subject><subject>Histology</subject><subject>Image acquisition</subject><subject>Image segmentation</subject><subject>Magnetic resonance imaging</subject><subject>Quantitative analysis</subject><subject>Scanners</subject><subject>Thalamus</subject><subject>Thickness measurement</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjUFqwzAQRUWgkNDmDgNdG1w5jt1lCCntopuSfRDxWFaQNc7MqJAL9Zxt0h6gqw-f__6bmYWtqqeiXVk7N0uRU1mWdt3Yuq4W5muTlUan2EGHOEFExykkD4J-xKROAyWgHobgh4JRKOZb1cAeJhIdiRVHeP94g54YztklDVfsE8ElFy8S5MqLcj5qZiwmpwNF8hc4EjPGm0IgJEiYmTr0mJB_H7og6ATlwdz1Lgou__LePL7s9tvXYmI6ZxQ9nCjzj04Otmmf23WzKuvqf6tvgRBhKw</recordid><startdate>20231017</startdate><enddate>20231017</enddate><creator>Khandelwal, Pulkit</creator><creator>Michael Tran Duong</creator><creator>Sadaghiani, Shokufeh</creator><creator>Lim, Sydney</creator><creator>Denning, Amanda</creator><creator>Chung, Eunice</creator><creator>Ravikumar, Sadhana</creator><creator>Arezoumandan, Sanaz</creator><creator>Peterson, Claire</creator><creator>Madigan Bedard</creator><creator>Capp, Noah</creator><creator>Ittyerah, Ranjit</creator><creator>Migdal, Elyse</creator><creator>Choi, Grace</creator><creator>Kopp, Emily</creator><creator>Loja, Bridget</creator><creator>Eusha Hasan</creator><creator>Li, Jiacheng</creator><creator>Bahena, Alejandra</creator><creator>Prabhakaran, Karthik</creator><creator>Mizsei, Gabor</creator><creator>Gabrielyan, Marianna</creator><creator>Schuck, Theresa</creator><creator>Trotman, Winifred</creator><creator>Robinson, John</creator><creator>Ohm, Daniel</creator><creator>Lee, Edward B</creator><creator>Trojanowski, John Q</creator><creator>McMillan, Corey</creator><creator>Grossman, Murray</creator><creator>Irwin, David J</creator><creator>Detre, John</creator><creator>Tisdall, M Dylan</creator><creator>Das, Sandhitsu R</creator><creator>Wisse, Laura E M</creator><creator>Wolk, David A</creator><creator>Yushkevich, Paul A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231017</creationdate><title>Automated deep learning segmentation of high-resolution 7 T postmortem MRI for quantitative analysis of structure-pathology correlations in neurodegenerative diseases</title><author>Khandelwal, Pulkit ; Michael Tran Duong ; Sadaghiani, Shokufeh ; Lim, Sydney ; Denning, Amanda ; Chung, Eunice ; Ravikumar, Sadhana ; Arezoumandan, Sanaz ; Peterson, Claire ; Madigan Bedard ; Capp, Noah ; Ittyerah, Ranjit ; Migdal, Elyse ; Choi, Grace ; Kopp, Emily ; Loja, Bridget ; Eusha Hasan ; Li, Jiacheng ; Bahena, Alejandra ; Prabhakaran, Karthik ; Mizsei, Gabor ; Gabrielyan, Marianna ; Schuck, Theresa ; Trotman, Winifred ; Robinson, John ; Ohm, Daniel ; Lee, Edward B ; Trojanowski, John Q ; McMillan, Corey ; Grossman, Murray ; Irwin, David J ; Detre, John ; Tisdall, M Dylan ; Das, Sandhitsu R ; Wisse, Laura E M ; Wolk, David A ; Yushkevich, Paul A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27898674053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Automation</topic><topic>Availability</topic><topic>Brain</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Heterogeneity</topic><topic>High resolution</topic><topic>Histology</topic><topic>Image acquisition</topic><topic>Image segmentation</topic><topic>Magnetic resonance imaging</topic><topic>Quantitative analysis</topic><topic>Scanners</topic><topic>Thalamus</topic><topic>Thickness measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Khandelwal, Pulkit</creatorcontrib><creatorcontrib>Michael Tran Duong</creatorcontrib><creatorcontrib>Sadaghiani, Shokufeh</creatorcontrib><creatorcontrib>Lim, Sydney</creatorcontrib><creatorcontrib>Denning, Amanda</creatorcontrib><creatorcontrib>Chung, Eunice</creatorcontrib><creatorcontrib>Ravikumar, Sadhana</creatorcontrib><creatorcontrib>Arezoumandan, Sanaz</creatorcontrib><creatorcontrib>Peterson, Claire</creatorcontrib><creatorcontrib>Madigan Bedard</creatorcontrib><creatorcontrib>Capp, Noah</creatorcontrib><creatorcontrib>Ittyerah, Ranjit</creatorcontrib><creatorcontrib>Migdal, Elyse</creatorcontrib><creatorcontrib>Choi, Grace</creatorcontrib><creatorcontrib>Kopp, Emily</creatorcontrib><creatorcontrib>Loja, Bridget</creatorcontrib><creatorcontrib>Eusha Hasan</creatorcontrib><creatorcontrib>Li, Jiacheng</creatorcontrib><creatorcontrib>Bahena, Alejandra</creatorcontrib><creatorcontrib>Prabhakaran, Karthik</creatorcontrib><creatorcontrib>Mizsei, Gabor</creatorcontrib><creatorcontrib>Gabrielyan, Marianna</creatorcontrib><creatorcontrib>Schuck, Theresa</creatorcontrib><creatorcontrib>Trotman, Winifred</creatorcontrib><creatorcontrib>Robinson, John</creatorcontrib><creatorcontrib>Ohm, Daniel</creatorcontrib><creatorcontrib>Lee, Edward B</creatorcontrib><creatorcontrib>Trojanowski, John Q</creatorcontrib><creatorcontrib>McMillan, Corey</creatorcontrib><creatorcontrib>Grossman, Murray</creatorcontrib><creatorcontrib>Irwin, David J</creatorcontrib><creatorcontrib>Detre, John</creatorcontrib><creatorcontrib>Tisdall, M Dylan</creatorcontrib><creatorcontrib>Das, Sandhitsu R</creatorcontrib><creatorcontrib>Wisse, Laura E M</creatorcontrib><creatorcontrib>Wolk, David A</creatorcontrib><creatorcontrib>Yushkevich, Paul A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khandelwal, Pulkit</au><au>Michael Tran Duong</au><au>Sadaghiani, Shokufeh</au><au>Lim, Sydney</au><au>Denning, Amanda</au><au>Chung, Eunice</au><au>Ravikumar, Sadhana</au><au>Arezoumandan, Sanaz</au><au>Peterson, Claire</au><au>Madigan Bedard</au><au>Capp, Noah</au><au>Ittyerah, Ranjit</au><au>Migdal, Elyse</au><au>Choi, Grace</au><au>Kopp, Emily</au><au>Loja, Bridget</au><au>Eusha Hasan</au><au>Li, Jiacheng</au><au>Bahena, Alejandra</au><au>Prabhakaran, Karthik</au><au>Mizsei, Gabor</au><au>Gabrielyan, Marianna</au><au>Schuck, Theresa</au><au>Trotman, Winifred</au><au>Robinson, John</au><au>Ohm, Daniel</au><au>Lee, Edward B</au><au>Trojanowski, John Q</au><au>McMillan, Corey</au><au>Grossman, Murray</au><au>Irwin, David J</au><au>Detre, John</au><au>Tisdall, M Dylan</au><au>Das, Sandhitsu R</au><au>Wisse, Laura E M</au><au>Wolk, David A</au><au>Yushkevich, Paul A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Automated deep learning segmentation of high-resolution 7 T postmortem MRI for quantitative analysis of structure-pathology correlations in neurodegenerative diseases</atitle><jtitle>arXiv.org</jtitle><date>2023-10-17</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Postmortem MRI allows brain anatomy to be examined at high resolution and to link pathology measures with morphometric measurements. However, automated segmentation methods for brain mapping in postmortem MRI are not well developed, primarily due to limited availability of labeled datasets, and heterogeneity in scanner hardware and acquisition protocols. In this work, we present a high resolution of 135 postmortem human brain tissue specimens imaged at 0.3 mm\(^{3}\) isotropic using a T2w sequence on a 7T whole-body MRI scanner. We developed a deep learning pipeline to segment the cortical mantle by benchmarking the performance of nine deep neural architectures, followed by post-hoc topological correction. We then segment four subcortical structures (caudate, putamen, globus pallidus, and thalamus), white matter hyperintensities, and the normal appearing white matter. We show generalizing capabilities across whole brain hemispheres in different specimens, and also on unseen images acquired at 0.28 mm^3 and 0.16 mm^3 isotropic T2*w FLASH sequence at 7T. We then compute localized cortical thickness and volumetric measurements across key regions, and link them with semi-quantitative neuropathological ratings. Our code, Jupyter notebooks, and the containerized executables are publicly available at: https://pulkit-khandelwal.github.io/exvivo-brain-upenn</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2789867405
source Free E- Journals
subjects Automation
Availability
Brain
Datasets
Deep learning
Heterogeneity
High resolution
Histology
Image acquisition
Image segmentation
Magnetic resonance imaging
Quantitative analysis
Scanners
Thalamus
Thickness measurement
title Automated deep learning segmentation of high-resolution 7 T postmortem MRI for quantitative analysis of structure-pathology correlations in neurodegenerative diseases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T01%3A13%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Automated%20deep%20learning%20segmentation%20of%20high-resolution%207%20T%20postmortem%20MRI%20for%20quantitative%20analysis%20of%20structure-pathology%20correlations%20in%20neurodegenerative%20diseases&rft.jtitle=arXiv.org&rft.au=Khandelwal,%20Pulkit&rft.date=2023-10-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2789867405%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2789867405&rft_id=info:pmid/&rfr_iscdi=true