An improved monarch butterfly optimization based multivariate fuzzy time series approach for forecasting GDP of India

Gross Domestic Product (GDP) is a crucial indicator to evaluate national economic development of a nation and the status of the macro-economy of a country. In the present work, we have proposed a novel approach for predicting India’s nominal GDP. Six new variables have been considered to predict the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evolutionary intelligence 2023-04, Vol.16 (2), p.605-619
Hauptverfasser: Jha, Vijayendra Vishal, Jajoo, Kanushree Sandeep, Tripathy, B. K., Saleem Durai, M. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 619
container_issue 2
container_start_page 605
container_title Evolutionary intelligence
container_volume 16
creator Jha, Vijayendra Vishal
Jajoo, Kanushree Sandeep
Tripathy, B. K.
Saleem Durai, M. A.
description Gross Domestic Product (GDP) is a crucial indicator to evaluate national economic development of a nation and the status of the macro-economy of a country. In the present work, we have proposed a novel approach for predicting India’s nominal GDP. Six new variables have been considered to predict the GDP of India for which a hybridised model comprising of the Multivariate Fuzzy Time Series (MVFTS) model and the Monarch Butterfly Optimization (MBO) algorithm is used. MBO is used to determine the optimal length of intervals in the Universe of Discourse (UoD) while keeping the number of intervals constant. The accuracy of the resulting algorithm is determined by taking the measures, Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE). The outcome obtained shows that the proposed MVFTS-MBO algorithm outperforms the existing methods for the prediction of India’s GDP.
doi_str_mv 10.1007/s12065-021-00686-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2789765115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2789765115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-150ae8a157b6e68904e316a4f9340f4676bf5b45dbeb8a689b6b97422793b60d3</originalsourceid><addsrcrecordid>eNp9kL1OwzAURi0EEqXwAkyWmAN24t-xKlAqIcEAs2UndnHVJMV2KrVPj0sQbAzW9XC-c68-AK4xusUI8buIS8RogUpcIMQEK8QJmGDBSEEl5qe_fyTPwUWM6wyViJMJGGYd9O029DvbwLbvdKg_oBlSssFt9rDfJt_6g06-76DR8QgNm-R3OnidLHTD4bCHmbEw2uBthHqbZTpLXB-Oz9Y6Jt-t4OL-FfYOLrvG60tw5vQm2qufOQXvjw9v86fi-WWxnM-ei7rCMhWYIm2FxpQbZpmQiNgKM02crAhyhHFmHDWENsYaoTNgmJGclCWXlWGoqabgZvTmmz4HG5Na90Po8kpVciE5oxjTTJUjVYc-xmCd2gbf6rBXGKljvWqsV-V61Xe9SuRQNYZihruVDX_qf1JfUcd-7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789765115</pqid></control><display><type>article</type><title>An improved monarch butterfly optimization based multivariate fuzzy time series approach for forecasting GDP of India</title><source>SpringerLink Journals</source><creator>Jha, Vijayendra Vishal ; Jajoo, Kanushree Sandeep ; Tripathy, B. K. ; Saleem Durai, M. A.</creator><creatorcontrib>Jha, Vijayendra Vishal ; Jajoo, Kanushree Sandeep ; Tripathy, B. K. ; Saleem Durai, M. A.</creatorcontrib><description>Gross Domestic Product (GDP) is a crucial indicator to evaluate national economic development of a nation and the status of the macro-economy of a country. In the present work, we have proposed a novel approach for predicting India’s nominal GDP. Six new variables have been considered to predict the GDP of India for which a hybridised model comprising of the Multivariate Fuzzy Time Series (MVFTS) model and the Monarch Butterfly Optimization (MBO) algorithm is used. MBO is used to determine the optimal length of intervals in the Universe of Discourse (UoD) while keeping the number of intervals constant. The accuracy of the resulting algorithm is determined by taking the measures, Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE). The outcome obtained shows that the proposed MVFTS-MBO algorithm outperforms the existing methods for the prediction of India’s GDP.</description><identifier>ISSN: 1864-5909</identifier><identifier>EISSN: 1864-5917</identifier><identifier>DOI: 10.1007/s12065-021-00686-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Applications of Mathematics ; Artificial Intelligence ; Bioinformatics ; Control ; Economic development ; Engineering ; Error analysis ; Intervals ; Mathematical and Computational Engineering ; Mechatronics ; Multivariate analysis ; Optimization ; Research Paper ; Robotics ; Root-mean-square errors ; Statistical Physics and Dynamical Systems ; Time series</subject><ispartof>Evolutionary intelligence, 2023-04, Vol.16 (2), p.605-619</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-150ae8a157b6e68904e316a4f9340f4676bf5b45dbeb8a689b6b97422793b60d3</citedby><cites>FETCH-LOGICAL-c319t-150ae8a157b6e68904e316a4f9340f4676bf5b45dbeb8a689b6b97422793b60d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12065-021-00686-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12065-021-00686-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Jha, Vijayendra Vishal</creatorcontrib><creatorcontrib>Jajoo, Kanushree Sandeep</creatorcontrib><creatorcontrib>Tripathy, B. K.</creatorcontrib><creatorcontrib>Saleem Durai, M. A.</creatorcontrib><title>An improved monarch butterfly optimization based multivariate fuzzy time series approach for forecasting GDP of India</title><title>Evolutionary intelligence</title><addtitle>Evol. Intel</addtitle><description>Gross Domestic Product (GDP) is a crucial indicator to evaluate national economic development of a nation and the status of the macro-economy of a country. In the present work, we have proposed a novel approach for predicting India’s nominal GDP. Six new variables have been considered to predict the GDP of India for which a hybridised model comprising of the Multivariate Fuzzy Time Series (MVFTS) model and the Monarch Butterfly Optimization (MBO) algorithm is used. MBO is used to determine the optimal length of intervals in the Universe of Discourse (UoD) while keeping the number of intervals constant. The accuracy of the resulting algorithm is determined by taking the measures, Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE). The outcome obtained shows that the proposed MVFTS-MBO algorithm outperforms the existing methods for the prediction of India’s GDP.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Artificial Intelligence</subject><subject>Bioinformatics</subject><subject>Control</subject><subject>Economic development</subject><subject>Engineering</subject><subject>Error analysis</subject><subject>Intervals</subject><subject>Mathematical and Computational Engineering</subject><subject>Mechatronics</subject><subject>Multivariate analysis</subject><subject>Optimization</subject><subject>Research Paper</subject><subject>Robotics</subject><subject>Root-mean-square errors</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Time series</subject><issn>1864-5909</issn><issn>1864-5917</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAURi0EEqXwAkyWmAN24t-xKlAqIcEAs2UndnHVJMV2KrVPj0sQbAzW9XC-c68-AK4xusUI8buIS8RogUpcIMQEK8QJmGDBSEEl5qe_fyTPwUWM6wyViJMJGGYd9O029DvbwLbvdKg_oBlSssFt9rDfJt_6g06-76DR8QgNm-R3OnidLHTD4bCHmbEw2uBthHqbZTpLXB-Oz9Y6Jt-t4OL-FfYOLrvG60tw5vQm2qufOQXvjw9v86fi-WWxnM-ei7rCMhWYIm2FxpQbZpmQiNgKM02crAhyhHFmHDWENsYaoTNgmJGclCWXlWGoqabgZvTmmz4HG5Na90Po8kpVciE5oxjTTJUjVYc-xmCd2gbf6rBXGKljvWqsV-V61Xe9SuRQNYZihruVDX_qf1JfUcd-7w</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Jha, Vijayendra Vishal</creator><creator>Jajoo, Kanushree Sandeep</creator><creator>Tripathy, B. K.</creator><creator>Saleem Durai, M. A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230401</creationdate><title>An improved monarch butterfly optimization based multivariate fuzzy time series approach for forecasting GDP of India</title><author>Jha, Vijayendra Vishal ; Jajoo, Kanushree Sandeep ; Tripathy, B. K. ; Saleem Durai, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-150ae8a157b6e68904e316a4f9340f4676bf5b45dbeb8a689b6b97422793b60d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Artificial Intelligence</topic><topic>Bioinformatics</topic><topic>Control</topic><topic>Economic development</topic><topic>Engineering</topic><topic>Error analysis</topic><topic>Intervals</topic><topic>Mathematical and Computational Engineering</topic><topic>Mechatronics</topic><topic>Multivariate analysis</topic><topic>Optimization</topic><topic>Research Paper</topic><topic>Robotics</topic><topic>Root-mean-square errors</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jha, Vijayendra Vishal</creatorcontrib><creatorcontrib>Jajoo, Kanushree Sandeep</creatorcontrib><creatorcontrib>Tripathy, B. K.</creatorcontrib><creatorcontrib>Saleem Durai, M. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Evolutionary intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jha, Vijayendra Vishal</au><au>Jajoo, Kanushree Sandeep</au><au>Tripathy, B. K.</au><au>Saleem Durai, M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved monarch butterfly optimization based multivariate fuzzy time series approach for forecasting GDP of India</atitle><jtitle>Evolutionary intelligence</jtitle><stitle>Evol. Intel</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>16</volume><issue>2</issue><spage>605</spage><epage>619</epage><pages>605-619</pages><issn>1864-5909</issn><eissn>1864-5917</eissn><abstract>Gross Domestic Product (GDP) is a crucial indicator to evaluate national economic development of a nation and the status of the macro-economy of a country. In the present work, we have proposed a novel approach for predicting India’s nominal GDP. Six new variables have been considered to predict the GDP of India for which a hybridised model comprising of the Multivariate Fuzzy Time Series (MVFTS) model and the Monarch Butterfly Optimization (MBO) algorithm is used. MBO is used to determine the optimal length of intervals in the Universe of Discourse (UoD) while keeping the number of intervals constant. The accuracy of the resulting algorithm is determined by taking the measures, Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE). The outcome obtained shows that the proposed MVFTS-MBO algorithm outperforms the existing methods for the prediction of India’s GDP.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12065-021-00686-8</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1864-5909
ispartof Evolutionary intelligence, 2023-04, Vol.16 (2), p.605-619
issn 1864-5909
1864-5917
language eng
recordid cdi_proquest_journals_2789765115
source SpringerLink Journals
subjects Algorithms
Applications of Mathematics
Artificial Intelligence
Bioinformatics
Control
Economic development
Engineering
Error analysis
Intervals
Mathematical and Computational Engineering
Mechatronics
Multivariate analysis
Optimization
Research Paper
Robotics
Root-mean-square errors
Statistical Physics and Dynamical Systems
Time series
title An improved monarch butterfly optimization based multivariate fuzzy time series approach for forecasting GDP of India
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A56%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20monarch%20butterfly%20optimization%20based%20multivariate%20fuzzy%20time%20series%20approach%20for%20forecasting%20GDP%20of%20India&rft.jtitle=Evolutionary%20intelligence&rft.au=Jha,%20Vijayendra%20Vishal&rft.date=2023-04-01&rft.volume=16&rft.issue=2&rft.spage=605&rft.epage=619&rft.pages=605-619&rft.issn=1864-5909&rft.eissn=1864-5917&rft_id=info:doi/10.1007/s12065-021-00686-8&rft_dat=%3Cproquest_cross%3E2789765115%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2789765115&rft_id=info:pmid/&rfr_iscdi=true