Exact Non-Oblivious Performance of Rademacher Random Embeddings

This paper revisits the performance of Rademacher random projections, establishing novel statistical guarantees that are numerically sharp and non-oblivious with respect to the input data. More specifically, the central result is the Schur-concavity property of Rademacher random projections with res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-03
Hauptverfasser: Skorski, Maciej, Temperoni, Alessandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper revisits the performance of Rademacher random projections, establishing novel statistical guarantees that are numerically sharp and non-oblivious with respect to the input data. More specifically, the central result is the Schur-concavity property of Rademacher random projections with respect to the inputs. This offers a novel geometric perspective on the performance of random projections, while improving quantitatively on bounds from previous works. As a corollary of this broader result, we obtained the improved performance on data which is sparse or is distributed with small spread. This non-oblivious analysis is a novelty compared to techniques from previous work, and bridges the frequently observed gap between theory and practise. The main result uses an algebraic framework for proving Schur-concavity properties, which is a contribution of independent interest and an elegant alternative to derivative-based criteria.
ISSN:2331-8422