Unlocking Layer-wise Relevance Propagation for Autoencoders

Autoencoders are a powerful and versatile tool often used for various problems such as anomaly detection, image processing and machine translation. However, their reconstructions are not always trivial to explain. Therefore, we propose a fast explainability solution by extending the Layer-wise Relev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-03
Hauptverfasser: Kobayashi, Kenyu, Khasanova, Renata, Schneuwly, Arno, Schmidt, Felix, Casserini, Matteo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kobayashi, Kenyu
Khasanova, Renata
Schneuwly, Arno
Schmidt, Felix
Casserini, Matteo
description Autoencoders are a powerful and versatile tool often used for various problems such as anomaly detection, image processing and machine translation. However, their reconstructions are not always trivial to explain. Therefore, we propose a fast explainability solution by extending the Layer-wise Relevance Propagation method with the help of Deep Taylor Decomposition framework. Furthermore, we introduce a novel validation technique for comparing our explainability approach with baseline methods in the case of missing ground-truth data. Our results highlight computational as well as qualitative advantages of the proposed explainability solution with respect to existing methods.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2789554131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2789554131</sourcerecordid><originalsourceid>FETCH-proquest_journals_27895541313</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwDs3LyU_OzsxLV_BJrEwt0i3PLE5VCErNSS1LzEtOVQgoyi9ITE8syczPU0jLL1JwLC3JT81Lzk9JLSrmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4I3MLS1NTE0NjQ2PiVAEAJPI3kg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789554131</pqid></control><display><type>article</type><title>Unlocking Layer-wise Relevance Propagation for Autoencoders</title><source>Free E- Journals</source><creator>Kobayashi, Kenyu ; Khasanova, Renata ; Schneuwly, Arno ; Schmidt, Felix ; Casserini, Matteo</creator><creatorcontrib>Kobayashi, Kenyu ; Khasanova, Renata ; Schneuwly, Arno ; Schmidt, Felix ; Casserini, Matteo</creatorcontrib><description>Autoencoders are a powerful and versatile tool often used for various problems such as anomaly detection, image processing and machine translation. However, their reconstructions are not always trivial to explain. Therefore, we propose a fast explainability solution by extending the Layer-wise Relevance Propagation method with the help of Deep Taylor Decomposition framework. Furthermore, we introduce a novel validation technique for comparing our explainability approach with baseline methods in the case of missing ground-truth data. Our results highlight computational as well as qualitative advantages of the proposed explainability solution with respect to existing methods.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Anomalies ; Image processing ; Machine translation ; Propagation ; Qualitative analysis</subject><ispartof>arXiv.org, 2023-03</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Kobayashi, Kenyu</creatorcontrib><creatorcontrib>Khasanova, Renata</creatorcontrib><creatorcontrib>Schneuwly, Arno</creatorcontrib><creatorcontrib>Schmidt, Felix</creatorcontrib><creatorcontrib>Casserini, Matteo</creatorcontrib><title>Unlocking Layer-wise Relevance Propagation for Autoencoders</title><title>arXiv.org</title><description>Autoencoders are a powerful and versatile tool often used for various problems such as anomaly detection, image processing and machine translation. However, their reconstructions are not always trivial to explain. Therefore, we propose a fast explainability solution by extending the Layer-wise Relevance Propagation method with the help of Deep Taylor Decomposition framework. Furthermore, we introduce a novel validation technique for comparing our explainability approach with baseline methods in the case of missing ground-truth data. Our results highlight computational as well as qualitative advantages of the proposed explainability solution with respect to existing methods.</description><subject>Anomalies</subject><subject>Image processing</subject><subject>Machine translation</subject><subject>Propagation</subject><subject>Qualitative analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwDs3LyU_OzsxLV_BJrEwt0i3PLE5VCErNSS1LzEtOVQgoyi9ITE8syczPU0jLL1JwLC3JT81Lzk9JLSrmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4I3MLS1NTE0NjQ2PiVAEAJPI3kg</recordid><startdate>20230321</startdate><enddate>20230321</enddate><creator>Kobayashi, Kenyu</creator><creator>Khasanova, Renata</creator><creator>Schneuwly, Arno</creator><creator>Schmidt, Felix</creator><creator>Casserini, Matteo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230321</creationdate><title>Unlocking Layer-wise Relevance Propagation for Autoencoders</title><author>Kobayashi, Kenyu ; Khasanova, Renata ; Schneuwly, Arno ; Schmidt, Felix ; Casserini, Matteo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27895541313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anomalies</topic><topic>Image processing</topic><topic>Machine translation</topic><topic>Propagation</topic><topic>Qualitative analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Kobayashi, Kenyu</creatorcontrib><creatorcontrib>Khasanova, Renata</creatorcontrib><creatorcontrib>Schneuwly, Arno</creatorcontrib><creatorcontrib>Schmidt, Felix</creatorcontrib><creatorcontrib>Casserini, Matteo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kobayashi, Kenyu</au><au>Khasanova, Renata</au><au>Schneuwly, Arno</au><au>Schmidt, Felix</au><au>Casserini, Matteo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Unlocking Layer-wise Relevance Propagation for Autoencoders</atitle><jtitle>arXiv.org</jtitle><date>2023-03-21</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Autoencoders are a powerful and versatile tool often used for various problems such as anomaly detection, image processing and machine translation. However, their reconstructions are not always trivial to explain. Therefore, we propose a fast explainability solution by extending the Layer-wise Relevance Propagation method with the help of Deep Taylor Decomposition framework. Furthermore, we introduce a novel validation technique for comparing our explainability approach with baseline methods in the case of missing ground-truth data. Our results highlight computational as well as qualitative advantages of the proposed explainability solution with respect to existing methods.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2789554131
source Free E- Journals
subjects Anomalies
Image processing
Machine translation
Propagation
Qualitative analysis
title Unlocking Layer-wise Relevance Propagation for Autoencoders
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A37%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Unlocking%20Layer-wise%20Relevance%20Propagation%20for%20Autoencoders&rft.jtitle=arXiv.org&rft.au=Kobayashi,%20Kenyu&rft.date=2023-03-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2789554131%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2789554131&rft_id=info:pmid/&rfr_iscdi=true