AppCiP: Energy-Efficient Approximate Convolution-in-Pixel Scheme for Neural Network Acceleration

Nowadays, always-on intelligent and self-powered visual perception systems have gained considerable attention and are widely used. However, capturing data and analyzing it via a backend/cloud processor are energy-intensive and long-latency, resulting in a memory bottleneck and low-speed feature extr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal on emerging and selected topics in circuits and systems 2023-03, Vol.13 (1), p.1-1
Hauptverfasser: Tabrizchi, Sepehr, Nezhadi, Ali, Angizi, Shaahin, Roohi, Arman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 1
container_start_page 1
container_title IEEE journal on emerging and selected topics in circuits and systems
container_volume 13
creator Tabrizchi, Sepehr
Nezhadi, Ali
Angizi, Shaahin
Roohi, Arman
description Nowadays, always-on intelligent and self-powered visual perception systems have gained considerable attention and are widely used. However, capturing data and analyzing it via a backend/cloud processor are energy-intensive and long-latency, resulting in a memory bottleneck and low-speed feature extraction at the edge. This paper presents AppCiP architecture as a sensing and computing integration design to efficiently enable Artificial Intelligence (AI) on resource-limited sensing devices. AppCiP provides a number of unique capabilities, including instant and reconfigurable RGB to grayscale conversion, highly parallel analog convolution-in-pixel, and realizing low-precision quinary weight neural networks. These features significantly mitigate the overhead of analog-to-digital converters and analog buffers, leading to a considerable reduction in power consumption and area overhead. Our circuit-to-application co-simulation results demonstrate that AppCiP achieves ~3 orders of magnitude higher efficiency on power consumption compared with the fastest existing designs considering different CNN workloads. It reaches a frame rate of 3000 and an efficiency of ~4.12 TOp/s/W. The performance accuracy of the AppCiP architecture on different datasets such as SVHN, Pest, CIFAR-10, MHIST, and CBL Face detection is evaluated and compared with the state-of-the-art design. The obtained results exhibit the best results among other processing in/near pixel architectures, while AppCip only degrades the accuracy by less than 1% on average compared to the floating-point baseline.
doi_str_mv 10.1109/JETCAS.2023.3242167
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2789465272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10036067</ieee_id><sourcerecordid>2789465272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-b73345c234857f00b33085051e11db53f8bd740aaa49b6a5feeb993070ab1aee3</originalsourceid><addsrcrecordid>eNpNUMtOwzAQtBBIVNAvgEMkzil-xgm3KCovVVCpcDZOugaXNC5OAu3f4yoVYi-7q5nZxyB0QfCEEJxdP05finwxoZiyCaOckkQeoRElIokZS8TxXy3kKRq37QqHEAlJOB-ht3yzKez8Jpo24N938dQYW1louigA3m3tWncQFa75dnXfWdfEtonndgt1tKg-YA2RcT56gt7rOqTux_nPKK8qqMHrPf8cnRhdtzA-5DP0ehsOvo9nz3cPRT6LK8bTLi4lY1xUNDRCGoxLxnAqsCBAyLIUzKTlUnKsteZZmWhhAMosY1hiXRINwM7Q1TA3XP3VQ9uplet9E1YqKtOMJ4JKGlhsYFXeta0HozY-vOh3imC1d1MNbqq9m-rgZlBdDioLAP8UmCU4wL-453Dp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789465272</pqid></control><display><type>article</type><title>AppCiP: Energy-Efficient Approximate Convolution-in-Pixel Scheme for Neural Network Acceleration</title><source>IEEE Electronic Library (IEL)</source><creator>Tabrizchi, Sepehr ; Nezhadi, Ali ; Angizi, Shaahin ; Roohi, Arman</creator><creatorcontrib>Tabrizchi, Sepehr ; Nezhadi, Ali ; Angizi, Shaahin ; Roohi, Arman</creatorcontrib><description>Nowadays, always-on intelligent and self-powered visual perception systems have gained considerable attention and are widely used. However, capturing data and analyzing it via a backend/cloud processor are energy-intensive and long-latency, resulting in a memory bottleneck and low-speed feature extraction at the edge. This paper presents AppCiP architecture as a sensing and computing integration design to efficiently enable Artificial Intelligence (AI) on resource-limited sensing devices. AppCiP provides a number of unique capabilities, including instant and reconfigurable RGB to grayscale conversion, highly parallel analog convolution-in-pixel, and realizing low-precision quinary weight neural networks. These features significantly mitigate the overhead of analog-to-digital converters and analog buffers, leading to a considerable reduction in power consumption and area overhead. Our circuit-to-application co-simulation results demonstrate that AppCiP achieves ~3 orders of magnitude higher efficiency on power consumption compared with the fastest existing designs considering different CNN workloads. It reaches a frame rate of 3000 and an efficiency of ~4.12 TOp/s/W. The performance accuracy of the AppCiP architecture on different datasets such as SVHN, Pest, CIFAR-10, MHIST, and CBL Face detection is evaluated and compared with the state-of-the-art design. The obtained results exhibit the best results among other processing in/near pixel architectures, while AppCip only degrades the accuracy by less than 1% on average compared to the floating-point baseline.</description><identifier>ISSN: 2156-3357</identifier><identifier>EISSN: 2156-3365</identifier><identifier>DOI: 10.1109/JETCAS.2023.3242167</identifier><identifier>CODEN: IJESLY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Acceleration ; Accuracy ; Analog to digital converters ; approximate computing ; Artificial intelligence ; Circuits ; Circuits and systems ; CMOS image sensor ; Computer architecture ; Convolution ; Convolution-in-pixel ; convolutional neural network ; Convolutional neural networks ; Face recognition ; Feature extraction ; Floating point arithmetic ; Low speed ; Magnetic tunneling ; Microprocessors ; Network latency ; Neural networks ; Pixels ; Power consumption ; Power demand ; Power management ; Sensors ; Visual perception</subject><ispartof>IEEE journal on emerging and selected topics in circuits and systems, 2023-03, Vol.13 (1), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-b73345c234857f00b33085051e11db53f8bd740aaa49b6a5feeb993070ab1aee3</citedby><cites>FETCH-LOGICAL-c348t-b73345c234857f00b33085051e11db53f8bd740aaa49b6a5feeb993070ab1aee3</cites><orcidid>0000-0002-0900-8768 ; 0000-0003-2289-6381 ; 0000-0001-5105-3450 ; 0000-0001-9394-2627</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10036067$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10036067$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tabrizchi, Sepehr</creatorcontrib><creatorcontrib>Nezhadi, Ali</creatorcontrib><creatorcontrib>Angizi, Shaahin</creatorcontrib><creatorcontrib>Roohi, Arman</creatorcontrib><title>AppCiP: Energy-Efficient Approximate Convolution-in-Pixel Scheme for Neural Network Acceleration</title><title>IEEE journal on emerging and selected topics in circuits and systems</title><addtitle>JETCAS</addtitle><description>Nowadays, always-on intelligent and self-powered visual perception systems have gained considerable attention and are widely used. However, capturing data and analyzing it via a backend/cloud processor are energy-intensive and long-latency, resulting in a memory bottleneck and low-speed feature extraction at the edge. This paper presents AppCiP architecture as a sensing and computing integration design to efficiently enable Artificial Intelligence (AI) on resource-limited sensing devices. AppCiP provides a number of unique capabilities, including instant and reconfigurable RGB to grayscale conversion, highly parallel analog convolution-in-pixel, and realizing low-precision quinary weight neural networks. These features significantly mitigate the overhead of analog-to-digital converters and analog buffers, leading to a considerable reduction in power consumption and area overhead. Our circuit-to-application co-simulation results demonstrate that AppCiP achieves ~3 orders of magnitude higher efficiency on power consumption compared with the fastest existing designs considering different CNN workloads. It reaches a frame rate of 3000 and an efficiency of ~4.12 TOp/s/W. The performance accuracy of the AppCiP architecture on different datasets such as SVHN, Pest, CIFAR-10, MHIST, and CBL Face detection is evaluated and compared with the state-of-the-art design. The obtained results exhibit the best results among other processing in/near pixel architectures, while AppCip only degrades the accuracy by less than 1% on average compared to the floating-point baseline.</description><subject>Acceleration</subject><subject>Accuracy</subject><subject>Analog to digital converters</subject><subject>approximate computing</subject><subject>Artificial intelligence</subject><subject>Circuits</subject><subject>Circuits and systems</subject><subject>CMOS image sensor</subject><subject>Computer architecture</subject><subject>Convolution</subject><subject>Convolution-in-pixel</subject><subject>convolutional neural network</subject><subject>Convolutional neural networks</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Floating point arithmetic</subject><subject>Low speed</subject><subject>Magnetic tunneling</subject><subject>Microprocessors</subject><subject>Network latency</subject><subject>Neural networks</subject><subject>Pixels</subject><subject>Power consumption</subject><subject>Power demand</subject><subject>Power management</subject><subject>Sensors</subject><subject>Visual perception</subject><issn>2156-3357</issn><issn>2156-3365</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUMtOwzAQtBBIVNAvgEMkzil-xgm3KCovVVCpcDZOugaXNC5OAu3f4yoVYi-7q5nZxyB0QfCEEJxdP05finwxoZiyCaOckkQeoRElIokZS8TxXy3kKRq37QqHEAlJOB-ht3yzKez8Jpo24N938dQYW1louigA3m3tWncQFa75dnXfWdfEtonndgt1tKg-YA2RcT56gt7rOqTux_nPKK8qqMHrPf8cnRhdtzA-5DP0ehsOvo9nz3cPRT6LK8bTLi4lY1xUNDRCGoxLxnAqsCBAyLIUzKTlUnKsteZZmWhhAMosY1hiXRINwM7Q1TA3XP3VQ9uplet9E1YqKtOMJ4JKGlhsYFXeta0HozY-vOh3imC1d1MNbqq9m-rgZlBdDioLAP8UmCU4wL-453Dp</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Tabrizchi, Sepehr</creator><creator>Nezhadi, Ali</creator><creator>Angizi, Shaahin</creator><creator>Roohi, Arman</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0900-8768</orcidid><orcidid>https://orcid.org/0000-0003-2289-6381</orcidid><orcidid>https://orcid.org/0000-0001-5105-3450</orcidid><orcidid>https://orcid.org/0000-0001-9394-2627</orcidid></search><sort><creationdate>20230301</creationdate><title>AppCiP: Energy-Efficient Approximate Convolution-in-Pixel Scheme for Neural Network Acceleration</title><author>Tabrizchi, Sepehr ; Nezhadi, Ali ; Angizi, Shaahin ; Roohi, Arman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-b73345c234857f00b33085051e11db53f8bd740aaa49b6a5feeb993070ab1aee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acceleration</topic><topic>Accuracy</topic><topic>Analog to digital converters</topic><topic>approximate computing</topic><topic>Artificial intelligence</topic><topic>Circuits</topic><topic>Circuits and systems</topic><topic>CMOS image sensor</topic><topic>Computer architecture</topic><topic>Convolution</topic><topic>Convolution-in-pixel</topic><topic>convolutional neural network</topic><topic>Convolutional neural networks</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Floating point arithmetic</topic><topic>Low speed</topic><topic>Magnetic tunneling</topic><topic>Microprocessors</topic><topic>Network latency</topic><topic>Neural networks</topic><topic>Pixels</topic><topic>Power consumption</topic><topic>Power demand</topic><topic>Power management</topic><topic>Sensors</topic><topic>Visual perception</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tabrizchi, Sepehr</creatorcontrib><creatorcontrib>Nezhadi, Ali</creatorcontrib><creatorcontrib>Angizi, Shaahin</creatorcontrib><creatorcontrib>Roohi, Arman</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE journal on emerging and selected topics in circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tabrizchi, Sepehr</au><au>Nezhadi, Ali</au><au>Angizi, Shaahin</au><au>Roohi, Arman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AppCiP: Energy-Efficient Approximate Convolution-in-Pixel Scheme for Neural Network Acceleration</atitle><jtitle>IEEE journal on emerging and selected topics in circuits and systems</jtitle><stitle>JETCAS</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>13</volume><issue>1</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2156-3357</issn><eissn>2156-3365</eissn><coden>IJESLY</coden><abstract>Nowadays, always-on intelligent and self-powered visual perception systems have gained considerable attention and are widely used. However, capturing data and analyzing it via a backend/cloud processor are energy-intensive and long-latency, resulting in a memory bottleneck and low-speed feature extraction at the edge. This paper presents AppCiP architecture as a sensing and computing integration design to efficiently enable Artificial Intelligence (AI) on resource-limited sensing devices. AppCiP provides a number of unique capabilities, including instant and reconfigurable RGB to grayscale conversion, highly parallel analog convolution-in-pixel, and realizing low-precision quinary weight neural networks. These features significantly mitigate the overhead of analog-to-digital converters and analog buffers, leading to a considerable reduction in power consumption and area overhead. Our circuit-to-application co-simulation results demonstrate that AppCiP achieves ~3 orders of magnitude higher efficiency on power consumption compared with the fastest existing designs considering different CNN workloads. It reaches a frame rate of 3000 and an efficiency of ~4.12 TOp/s/W. The performance accuracy of the AppCiP architecture on different datasets such as SVHN, Pest, CIFAR-10, MHIST, and CBL Face detection is evaluated and compared with the state-of-the-art design. The obtained results exhibit the best results among other processing in/near pixel architectures, while AppCip only degrades the accuracy by less than 1% on average compared to the floating-point baseline.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JETCAS.2023.3242167</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0900-8768</orcidid><orcidid>https://orcid.org/0000-0003-2289-6381</orcidid><orcidid>https://orcid.org/0000-0001-5105-3450</orcidid><orcidid>https://orcid.org/0000-0001-9394-2627</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-3357
ispartof IEEE journal on emerging and selected topics in circuits and systems, 2023-03, Vol.13 (1), p.1-1
issn 2156-3357
2156-3365
language eng
recordid cdi_proquest_journals_2789465272
source IEEE Electronic Library (IEL)
subjects Acceleration
Accuracy
Analog to digital converters
approximate computing
Artificial intelligence
Circuits
Circuits and systems
CMOS image sensor
Computer architecture
Convolution
Convolution-in-pixel
convolutional neural network
Convolutional neural networks
Face recognition
Feature extraction
Floating point arithmetic
Low speed
Magnetic tunneling
Microprocessors
Network latency
Neural networks
Pixels
Power consumption
Power demand
Power management
Sensors
Visual perception
title AppCiP: Energy-Efficient Approximate Convolution-in-Pixel Scheme for Neural Network Acceleration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A10%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AppCiP:%20Energy-Efficient%20Approximate%20Convolution-in-Pixel%20Scheme%20for%20Neural%20Network%20Acceleration&rft.jtitle=IEEE%20journal%20on%20emerging%20and%20selected%20topics%20in%20circuits%20and%20systems&rft.au=Tabrizchi,%20Sepehr&rft.date=2023-03-01&rft.volume=13&rft.issue=1&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2156-3357&rft.eissn=2156-3365&rft.coden=IJESLY&rft_id=info:doi/10.1109/JETCAS.2023.3242167&rft_dat=%3Cproquest_RIE%3E2789465272%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2789465272&rft_id=info:pmid/&rft_ieee_id=10036067&rfr_iscdi=true