Toward Safe and Efficient Human-Swarm Collaboration: A Hierarchical Multi-Agent Pickup and Delivery Framework
Multi-agent pickup and delivery (MAPD) is crucial in intelligent storage systems (ISSs), where multiple automated guided vehicles (AGVs) are assigned to various and potentially uncertain dynamic tasks. In this work, we consider a human-swarm hybrid system consisting of human workers and a swarm of A...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent vehicles 2023-02, Vol.8 (2), p.1664-1675 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1675 |
---|---|
container_issue | 2 |
container_start_page | 1664 |
container_title | IEEE transactions on intelligent vehicles |
container_volume | 8 |
creator | Gong, Xin Wang, Tieniu Huang, Tingwen Cui, Yukang |
description | Multi-agent pickup and delivery (MAPD) is crucial in intelligent storage systems (ISSs), where multiple automated guided vehicles (AGVs) are assigned to various and potentially uncertain dynamic tasks. In this work, we consider a human-swarm hybrid system consisting of human workers and a swarm of AGVs collaborating to accomplish MAPD tasks. A human-swarm hybrid system pickup and delivery ((HS)_{2}PD) framework based on the receding-horizon prediction window is proposed, which facilities the development of future ISSs. This (HS)_{2}PD framework is essentially a two-layer hierarchical decision procedure, which takes the uncertainties of human behavior and the dynamic changes of tasks into account. The first layer is a two-level programming model handling the problems of mode assignment and task allocation. The second layer calculates each vehicle's exact path by solving mixed-integer programmings. An integrated high-efficient algorithm for the (HS)_{2}PD problem is also proposed. The practicality and validity of the above algorithm are demonstrated via several groups of numerical simulations of (HS)_{2}PD tasks. |
doi_str_mv | 10.1109/TIV.2022.3172342 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2789464825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9767625</ieee_id><sourcerecordid>2789464825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-75137a0dd6a7de3fd57b37b2ff445e3da8f77c0fc7aa921508a20cd7592b58d53</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhoMoWKp3wcuC59Tdzcfueiu1tYWKQqvXMNkP3TbJ1k1i6b83sdXTDMzzvgNPENwQPCIEi_v14n1EMaWjiDAaxfQsGNCIiZALHJ__7Tzhl8F1XW8wxiTllGMxCMq124NXaAVGI6gUmhpjpdVVg-ZtCVW46s4lmriigNx5aKyrHtAYza324OWnlVCg57ZobDj-6FOvVm7b3W_Voy7st_YHNPNQ6r3z26vgwkBR6-vTHAZvs-l6Mg-XL0-LyXgZSipIE7KERAywUikwpSOjEpZHLKfGxHGiIwXcMCaxkQxAUJJgDhRLxRJB84SrJBoGd8fenXdfra6bbONaX3UvM8q4iNOY057CR0p6V9dem2znbQn-kBGc9V6zzmvWe81OXrvI7TFitdb_uGApS7vCH2c2c-4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789464825</pqid></control><display><type>article</type><title>Toward Safe and Efficient Human-Swarm Collaboration: A Hierarchical Multi-Agent Pickup and Delivery Framework</title><source>IEEE Electronic Library (IEL)</source><creator>Gong, Xin ; Wang, Tieniu ; Huang, Tingwen ; Cui, Yukang</creator><creatorcontrib>Gong, Xin ; Wang, Tieniu ; Huang, Tingwen ; Cui, Yukang</creatorcontrib><description><![CDATA[Multi-agent pickup and delivery (MAPD) is crucial in intelligent storage systems (ISSs), where multiple automated guided vehicles (AGVs) are assigned to various and potentially uncertain dynamic tasks. In this work, we consider a human-swarm hybrid system consisting of human workers and a swarm of AGVs collaborating to accomplish MAPD tasks. A human-swarm hybrid system pickup and delivery ((HS)<inline-formula><tex-math notation="LaTeX">_{2}</tex-math></inline-formula>PD) framework based on the receding-horizon prediction window is proposed, which facilities the development of future ISSs. This (HS)<inline-formula><tex-math notation="LaTeX">_{2}</tex-math></inline-formula>PD framework is essentially a two-layer hierarchical decision procedure, which takes the uncertainties of human behavior and the dynamic changes of tasks into account. The first layer is a two-level programming model handling the problems of mode assignment and task allocation. The second layer calculates each vehicle's exact path by solving mixed-integer programmings. An integrated high-efficient algorithm for the (HS)<inline-formula><tex-math notation="LaTeX">_{2}</tex-math></inline-formula>PD problem is also proposed. The practicality and validity of the above algorithm are demonstrated via several groups of numerical simulations of (HS)<inline-formula><tex-math notation="LaTeX">_{2}</tex-math></inline-formula>PD tasks.]]></description><identifier>ISSN: 2379-8858</identifier><identifier>EISSN: 2379-8904</identifier><identifier>DOI: 10.1109/TIV.2022.3172342</identifier><identifier>CODEN: ITIVBL</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Automated guided vehicles ; Collaboration ; human–swarm hyb- rid system ; Hybrid systems ; Indexes ; Mathematical models ; Mixed integer ; Multiagent systems ; path finding ; pickup and delivery ; Roads ; Safety ; Space vehicles ; Storage systems ; task allocation ; Task analysis ; Vehicle dynamics</subject><ispartof>IEEE transactions on intelligent vehicles, 2023-02, Vol.8 (2), p.1664-1675</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-75137a0dd6a7de3fd57b37b2ff445e3da8f77c0fc7aa921508a20cd7592b58d53</citedby><cites>FETCH-LOGICAL-c291t-75137a0dd6a7de3fd57b37b2ff445e3da8f77c0fc7aa921508a20cd7592b58d53</cites><orcidid>0000-0001-8783-7441 ; 0000-0001-9610-846X ; 0000-0001-6883-5088 ; 0000-0001-6019-5557</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9767625$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9767625$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gong, Xin</creatorcontrib><creatorcontrib>Wang, Tieniu</creatorcontrib><creatorcontrib>Huang, Tingwen</creatorcontrib><creatorcontrib>Cui, Yukang</creatorcontrib><title>Toward Safe and Efficient Human-Swarm Collaboration: A Hierarchical Multi-Agent Pickup and Delivery Framework</title><title>IEEE transactions on intelligent vehicles</title><addtitle>TIV</addtitle><description><![CDATA[Multi-agent pickup and delivery (MAPD) is crucial in intelligent storage systems (ISSs), where multiple automated guided vehicles (AGVs) are assigned to various and potentially uncertain dynamic tasks. In this work, we consider a human-swarm hybrid system consisting of human workers and a swarm of AGVs collaborating to accomplish MAPD tasks. A human-swarm hybrid system pickup and delivery ((HS)<inline-formula><tex-math notation="LaTeX">_{2}</tex-math></inline-formula>PD) framework based on the receding-horizon prediction window is proposed, which facilities the development of future ISSs. This (HS)<inline-formula><tex-math notation="LaTeX">_{2}</tex-math></inline-formula>PD framework is essentially a two-layer hierarchical decision procedure, which takes the uncertainties of human behavior and the dynamic changes of tasks into account. The first layer is a two-level programming model handling the problems of mode assignment and task allocation. The second layer calculates each vehicle's exact path by solving mixed-integer programmings. An integrated high-efficient algorithm for the (HS)<inline-formula><tex-math notation="LaTeX">_{2}</tex-math></inline-formula>PD problem is also proposed. The practicality and validity of the above algorithm are demonstrated via several groups of numerical simulations of (HS)<inline-formula><tex-math notation="LaTeX">_{2}</tex-math></inline-formula>PD tasks.]]></description><subject>Algorithms</subject><subject>Automated guided vehicles</subject><subject>Collaboration</subject><subject>human–swarm hyb- rid system</subject><subject>Hybrid systems</subject><subject>Indexes</subject><subject>Mathematical models</subject><subject>Mixed integer</subject><subject>Multiagent systems</subject><subject>path finding</subject><subject>pickup and delivery</subject><subject>Roads</subject><subject>Safety</subject><subject>Space vehicles</subject><subject>Storage systems</subject><subject>task allocation</subject><subject>Task analysis</subject><subject>Vehicle dynamics</subject><issn>2379-8858</issn><issn>2379-8904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhoMoWKp3wcuC59Tdzcfueiu1tYWKQqvXMNkP3TbJ1k1i6b83sdXTDMzzvgNPENwQPCIEi_v14n1EMaWjiDAaxfQsGNCIiZALHJ__7Tzhl8F1XW8wxiTllGMxCMq124NXaAVGI6gUmhpjpdVVg-ZtCVW46s4lmriigNx5aKyrHtAYza324OWnlVCg57ZobDj-6FOvVm7b3W_Voy7st_YHNPNQ6r3z26vgwkBR6-vTHAZvs-l6Mg-XL0-LyXgZSipIE7KERAywUikwpSOjEpZHLKfGxHGiIwXcMCaxkQxAUJJgDhRLxRJB84SrJBoGd8fenXdfra6bbONaX3UvM8q4iNOY057CR0p6V9dem2znbQn-kBGc9V6zzmvWe81OXrvI7TFitdb_uGApS7vCH2c2c-4</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Gong, Xin</creator><creator>Wang, Tieniu</creator><creator>Huang, Tingwen</creator><creator>Cui, Yukang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8783-7441</orcidid><orcidid>https://orcid.org/0000-0001-9610-846X</orcidid><orcidid>https://orcid.org/0000-0001-6883-5088</orcidid><orcidid>https://orcid.org/0000-0001-6019-5557</orcidid></search><sort><creationdate>20230201</creationdate><title>Toward Safe and Efficient Human-Swarm Collaboration: A Hierarchical Multi-Agent Pickup and Delivery Framework</title><author>Gong, Xin ; Wang, Tieniu ; Huang, Tingwen ; Cui, Yukang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-75137a0dd6a7de3fd57b37b2ff445e3da8f77c0fc7aa921508a20cd7592b58d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Automated guided vehicles</topic><topic>Collaboration</topic><topic>human–swarm hyb- rid system</topic><topic>Hybrid systems</topic><topic>Indexes</topic><topic>Mathematical models</topic><topic>Mixed integer</topic><topic>Multiagent systems</topic><topic>path finding</topic><topic>pickup and delivery</topic><topic>Roads</topic><topic>Safety</topic><topic>Space vehicles</topic><topic>Storage systems</topic><topic>task allocation</topic><topic>Task analysis</topic><topic>Vehicle dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Xin</creatorcontrib><creatorcontrib>Wang, Tieniu</creatorcontrib><creatorcontrib>Huang, Tingwen</creatorcontrib><creatorcontrib>Cui, Yukang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on intelligent vehicles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gong, Xin</au><au>Wang, Tieniu</au><au>Huang, Tingwen</au><au>Cui, Yukang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Safe and Efficient Human-Swarm Collaboration: A Hierarchical Multi-Agent Pickup and Delivery Framework</atitle><jtitle>IEEE transactions on intelligent vehicles</jtitle><stitle>TIV</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>8</volume><issue>2</issue><spage>1664</spage><epage>1675</epage><pages>1664-1675</pages><issn>2379-8858</issn><eissn>2379-8904</eissn><coden>ITIVBL</coden><abstract><![CDATA[Multi-agent pickup and delivery (MAPD) is crucial in intelligent storage systems (ISSs), where multiple automated guided vehicles (AGVs) are assigned to various and potentially uncertain dynamic tasks. In this work, we consider a human-swarm hybrid system consisting of human workers and a swarm of AGVs collaborating to accomplish MAPD tasks. A human-swarm hybrid system pickup and delivery ((HS)<inline-formula><tex-math notation="LaTeX">_{2}</tex-math></inline-formula>PD) framework based on the receding-horizon prediction window is proposed, which facilities the development of future ISSs. This (HS)<inline-formula><tex-math notation="LaTeX">_{2}</tex-math></inline-formula>PD framework is essentially a two-layer hierarchical decision procedure, which takes the uncertainties of human behavior and the dynamic changes of tasks into account. The first layer is a two-level programming model handling the problems of mode assignment and task allocation. The second layer calculates each vehicle's exact path by solving mixed-integer programmings. An integrated high-efficient algorithm for the (HS)<inline-formula><tex-math notation="LaTeX">_{2}</tex-math></inline-formula>PD problem is also proposed. The practicality and validity of the above algorithm are demonstrated via several groups of numerical simulations of (HS)<inline-formula><tex-math notation="LaTeX">_{2}</tex-math></inline-formula>PD tasks.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TIV.2022.3172342</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8783-7441</orcidid><orcidid>https://orcid.org/0000-0001-9610-846X</orcidid><orcidid>https://orcid.org/0000-0001-6883-5088</orcidid><orcidid>https://orcid.org/0000-0001-6019-5557</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2379-8858 |
ispartof | IEEE transactions on intelligent vehicles, 2023-02, Vol.8 (2), p.1664-1675 |
issn | 2379-8858 2379-8904 |
language | eng |
recordid | cdi_proquest_journals_2789464825 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Automated guided vehicles Collaboration human–swarm hyb- rid system Hybrid systems Indexes Mathematical models Mixed integer Multiagent systems path finding pickup and delivery Roads Safety Space vehicles Storage systems task allocation Task analysis Vehicle dynamics |
title | Toward Safe and Efficient Human-Swarm Collaboration: A Hierarchical Multi-Agent Pickup and Delivery Framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A42%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Safe%20and%20Efficient%20Human-Swarm%20Collaboration:%20A%20Hierarchical%20Multi-Agent%20Pickup%20and%20Delivery%20Framework&rft.jtitle=IEEE%20transactions%20on%20intelligent%20vehicles&rft.au=Gong,%20Xin&rft.date=2023-02-01&rft.volume=8&rft.issue=2&rft.spage=1664&rft.epage=1675&rft.pages=1664-1675&rft.issn=2379-8858&rft.eissn=2379-8904&rft.coden=ITIVBL&rft_id=info:doi/10.1109/TIV.2022.3172342&rft_dat=%3Cproquest_RIE%3E2789464825%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2789464825&rft_id=info:pmid/&rft_ieee_id=9767625&rfr_iscdi=true |