Toward Safe and Efficient Human-Swarm Collaboration: A Hierarchical Multi-Agent Pickup and Delivery Framework

Multi-agent pickup and delivery (MAPD) is crucial in intelligent storage systems (ISSs), where multiple automated guided vehicles (AGVs) are assigned to various and potentially uncertain dynamic tasks. In this work, we consider a human-swarm hybrid system consisting of human workers and a swarm of A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent vehicles 2023-02, Vol.8 (2), p.1664-1675
Hauptverfasser: Gong, Xin, Wang, Tieniu, Huang, Tingwen, Cui, Yukang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1675
container_issue 2
container_start_page 1664
container_title IEEE transactions on intelligent vehicles
container_volume 8
creator Gong, Xin
Wang, Tieniu
Huang, Tingwen
Cui, Yukang
description Multi-agent pickup and delivery (MAPD) is crucial in intelligent storage systems (ISSs), where multiple automated guided vehicles (AGVs) are assigned to various and potentially uncertain dynamic tasks. In this work, we consider a human-swarm hybrid system consisting of human workers and a swarm of AGVs collaborating to accomplish MAPD tasks. A human-swarm hybrid system pickup and delivery ((HS)_{2}PD) framework based on the receding-horizon prediction window is proposed, which facilities the development of future ISSs. This (HS)_{2}PD framework is essentially a two-layer hierarchical decision procedure, which takes the uncertainties of human behavior and the dynamic changes of tasks into account. The first layer is a two-level programming model handling the problems of mode assignment and task allocation. The second layer calculates each vehicle's exact path by solving mixed-integer programmings. An integrated high-efficient algorithm for the (HS)_{2}PD problem is also proposed. The practicality and validity of the above algorithm are demonstrated via several groups of numerical simulations of (HS)_{2}PD tasks.
doi_str_mv 10.1109/TIV.2022.3172342
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2789464825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9767625</ieee_id><sourcerecordid>2789464825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-75137a0dd6a7de3fd57b37b2ff445e3da8f77c0fc7aa921508a20cd7592b58d53</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhoMoWKp3wcuC59Tdzcfueiu1tYWKQqvXMNkP3TbJ1k1i6b83sdXTDMzzvgNPENwQPCIEi_v14n1EMaWjiDAaxfQsGNCIiZALHJ__7Tzhl8F1XW8wxiTllGMxCMq124NXaAVGI6gUmhpjpdVVg-ZtCVW46s4lmriigNx5aKyrHtAYza324OWnlVCg57ZobDj-6FOvVm7b3W_Voy7st_YHNPNQ6r3z26vgwkBR6-vTHAZvs-l6Mg-XL0-LyXgZSipIE7KERAywUikwpSOjEpZHLKfGxHGiIwXcMCaxkQxAUJJgDhRLxRJB84SrJBoGd8fenXdfra6bbONaX3UvM8q4iNOY057CR0p6V9dem2znbQn-kBGc9V6zzmvWe81OXrvI7TFitdb_uGApS7vCH2c2c-4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789464825</pqid></control><display><type>article</type><title>Toward Safe and Efficient Human-Swarm Collaboration: A Hierarchical Multi-Agent Pickup and Delivery Framework</title><source>IEEE Electronic Library (IEL)</source><creator>Gong, Xin ; Wang, Tieniu ; Huang, Tingwen ; Cui, Yukang</creator><creatorcontrib>Gong, Xin ; Wang, Tieniu ; Huang, Tingwen ; Cui, Yukang</creatorcontrib><description><![CDATA[Multi-agent pickup and delivery (MAPD) is crucial in intelligent storage systems (ISSs), where multiple automated guided vehicles (AGVs) are assigned to various and potentially uncertain dynamic tasks. In this work, we consider a human-swarm hybrid system consisting of human workers and a swarm of AGVs collaborating to accomplish MAPD tasks. A human-swarm hybrid system pickup and delivery ((HS)<inline-formula><tex-math notation="LaTeX">_{2}</tex-math></inline-formula>PD) framework based on the receding-horizon prediction window is proposed, which facilities the development of future ISSs. This (HS)<inline-formula><tex-math notation="LaTeX">_{2}</tex-math></inline-formula>PD framework is essentially a two-layer hierarchical decision procedure, which takes the uncertainties of human behavior and the dynamic changes of tasks into account. The first layer is a two-level programming model handling the problems of mode assignment and task allocation. The second layer calculates each vehicle's exact path by solving mixed-integer programmings. An integrated high-efficient algorithm for the (HS)<inline-formula><tex-math notation="LaTeX">_{2}</tex-math></inline-formula>PD problem is also proposed. The practicality and validity of the above algorithm are demonstrated via several groups of numerical simulations of (HS)<inline-formula><tex-math notation="LaTeX">_{2}</tex-math></inline-formula>PD tasks.]]></description><identifier>ISSN: 2379-8858</identifier><identifier>EISSN: 2379-8904</identifier><identifier>DOI: 10.1109/TIV.2022.3172342</identifier><identifier>CODEN: ITIVBL</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Automated guided vehicles ; Collaboration ; human–swarm hyb- rid system ; Hybrid systems ; Indexes ; Mathematical models ; Mixed integer ; Multiagent systems ; path finding ; pickup and delivery ; Roads ; Safety ; Space vehicles ; Storage systems ; task allocation ; Task analysis ; Vehicle dynamics</subject><ispartof>IEEE transactions on intelligent vehicles, 2023-02, Vol.8 (2), p.1664-1675</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-75137a0dd6a7de3fd57b37b2ff445e3da8f77c0fc7aa921508a20cd7592b58d53</citedby><cites>FETCH-LOGICAL-c291t-75137a0dd6a7de3fd57b37b2ff445e3da8f77c0fc7aa921508a20cd7592b58d53</cites><orcidid>0000-0001-8783-7441 ; 0000-0001-9610-846X ; 0000-0001-6883-5088 ; 0000-0001-6019-5557</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9767625$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9767625$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gong, Xin</creatorcontrib><creatorcontrib>Wang, Tieniu</creatorcontrib><creatorcontrib>Huang, Tingwen</creatorcontrib><creatorcontrib>Cui, Yukang</creatorcontrib><title>Toward Safe and Efficient Human-Swarm Collaboration: A Hierarchical Multi-Agent Pickup and Delivery Framework</title><title>IEEE transactions on intelligent vehicles</title><addtitle>TIV</addtitle><description><![CDATA[Multi-agent pickup and delivery (MAPD) is crucial in intelligent storage systems (ISSs), where multiple automated guided vehicles (AGVs) are assigned to various and potentially uncertain dynamic tasks. In this work, we consider a human-swarm hybrid system consisting of human workers and a swarm of AGVs collaborating to accomplish MAPD tasks. A human-swarm hybrid system pickup and delivery ((HS)<inline-formula><tex-math notation="LaTeX">_{2}</tex-math></inline-formula>PD) framework based on the receding-horizon prediction window is proposed, which facilities the development of future ISSs. This (HS)<inline-formula><tex-math notation="LaTeX">_{2}</tex-math></inline-formula>PD framework is essentially a two-layer hierarchical decision procedure, which takes the uncertainties of human behavior and the dynamic changes of tasks into account. The first layer is a two-level programming model handling the problems of mode assignment and task allocation. The second layer calculates each vehicle's exact path by solving mixed-integer programmings. An integrated high-efficient algorithm for the (HS)<inline-formula><tex-math notation="LaTeX">_{2}</tex-math></inline-formula>PD problem is also proposed. The practicality and validity of the above algorithm are demonstrated via several groups of numerical simulations of (HS)<inline-formula><tex-math notation="LaTeX">_{2}</tex-math></inline-formula>PD tasks.]]></description><subject>Algorithms</subject><subject>Automated guided vehicles</subject><subject>Collaboration</subject><subject>human–swarm hyb- rid system</subject><subject>Hybrid systems</subject><subject>Indexes</subject><subject>Mathematical models</subject><subject>Mixed integer</subject><subject>Multiagent systems</subject><subject>path finding</subject><subject>pickup and delivery</subject><subject>Roads</subject><subject>Safety</subject><subject>Space vehicles</subject><subject>Storage systems</subject><subject>task allocation</subject><subject>Task analysis</subject><subject>Vehicle dynamics</subject><issn>2379-8858</issn><issn>2379-8904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhoMoWKp3wcuC59Tdzcfueiu1tYWKQqvXMNkP3TbJ1k1i6b83sdXTDMzzvgNPENwQPCIEi_v14n1EMaWjiDAaxfQsGNCIiZALHJ__7Tzhl8F1XW8wxiTllGMxCMq124NXaAVGI6gUmhpjpdVVg-ZtCVW46s4lmriigNx5aKyrHtAYza324OWnlVCg57ZobDj-6FOvVm7b3W_Voy7st_YHNPNQ6r3z26vgwkBR6-vTHAZvs-l6Mg-XL0-LyXgZSipIE7KERAywUikwpSOjEpZHLKfGxHGiIwXcMCaxkQxAUJJgDhRLxRJB84SrJBoGd8fenXdfra6bbONaX3UvM8q4iNOY057CR0p6V9dem2znbQn-kBGc9V6zzmvWe81OXrvI7TFitdb_uGApS7vCH2c2c-4</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Gong, Xin</creator><creator>Wang, Tieniu</creator><creator>Huang, Tingwen</creator><creator>Cui, Yukang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8783-7441</orcidid><orcidid>https://orcid.org/0000-0001-9610-846X</orcidid><orcidid>https://orcid.org/0000-0001-6883-5088</orcidid><orcidid>https://orcid.org/0000-0001-6019-5557</orcidid></search><sort><creationdate>20230201</creationdate><title>Toward Safe and Efficient Human-Swarm Collaboration: A Hierarchical Multi-Agent Pickup and Delivery Framework</title><author>Gong, Xin ; Wang, Tieniu ; Huang, Tingwen ; Cui, Yukang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-75137a0dd6a7de3fd57b37b2ff445e3da8f77c0fc7aa921508a20cd7592b58d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Automated guided vehicles</topic><topic>Collaboration</topic><topic>human–swarm hyb- rid system</topic><topic>Hybrid systems</topic><topic>Indexes</topic><topic>Mathematical models</topic><topic>Mixed integer</topic><topic>Multiagent systems</topic><topic>path finding</topic><topic>pickup and delivery</topic><topic>Roads</topic><topic>Safety</topic><topic>Space vehicles</topic><topic>Storage systems</topic><topic>task allocation</topic><topic>Task analysis</topic><topic>Vehicle dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Xin</creatorcontrib><creatorcontrib>Wang, Tieniu</creatorcontrib><creatorcontrib>Huang, Tingwen</creatorcontrib><creatorcontrib>Cui, Yukang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on intelligent vehicles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gong, Xin</au><au>Wang, Tieniu</au><au>Huang, Tingwen</au><au>Cui, Yukang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Safe and Efficient Human-Swarm Collaboration: A Hierarchical Multi-Agent Pickup and Delivery Framework</atitle><jtitle>IEEE transactions on intelligent vehicles</jtitle><stitle>TIV</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>8</volume><issue>2</issue><spage>1664</spage><epage>1675</epage><pages>1664-1675</pages><issn>2379-8858</issn><eissn>2379-8904</eissn><coden>ITIVBL</coden><abstract><![CDATA[Multi-agent pickup and delivery (MAPD) is crucial in intelligent storage systems (ISSs), where multiple automated guided vehicles (AGVs) are assigned to various and potentially uncertain dynamic tasks. In this work, we consider a human-swarm hybrid system consisting of human workers and a swarm of AGVs collaborating to accomplish MAPD tasks. A human-swarm hybrid system pickup and delivery ((HS)<inline-formula><tex-math notation="LaTeX">_{2}</tex-math></inline-formula>PD) framework based on the receding-horizon prediction window is proposed, which facilities the development of future ISSs. This (HS)<inline-formula><tex-math notation="LaTeX">_{2}</tex-math></inline-formula>PD framework is essentially a two-layer hierarchical decision procedure, which takes the uncertainties of human behavior and the dynamic changes of tasks into account. The first layer is a two-level programming model handling the problems of mode assignment and task allocation. The second layer calculates each vehicle's exact path by solving mixed-integer programmings. An integrated high-efficient algorithm for the (HS)<inline-formula><tex-math notation="LaTeX">_{2}</tex-math></inline-formula>PD problem is also proposed. The practicality and validity of the above algorithm are demonstrated via several groups of numerical simulations of (HS)<inline-formula><tex-math notation="LaTeX">_{2}</tex-math></inline-formula>PD tasks.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TIV.2022.3172342</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8783-7441</orcidid><orcidid>https://orcid.org/0000-0001-9610-846X</orcidid><orcidid>https://orcid.org/0000-0001-6883-5088</orcidid><orcidid>https://orcid.org/0000-0001-6019-5557</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2379-8858
ispartof IEEE transactions on intelligent vehicles, 2023-02, Vol.8 (2), p.1664-1675
issn 2379-8858
2379-8904
language eng
recordid cdi_proquest_journals_2789464825
source IEEE Electronic Library (IEL)
subjects Algorithms
Automated guided vehicles
Collaboration
human–swarm hyb- rid system
Hybrid systems
Indexes
Mathematical models
Mixed integer
Multiagent systems
path finding
pickup and delivery
Roads
Safety
Space vehicles
Storage systems
task allocation
Task analysis
Vehicle dynamics
title Toward Safe and Efficient Human-Swarm Collaboration: A Hierarchical Multi-Agent Pickup and Delivery Framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A42%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Safe%20and%20Efficient%20Human-Swarm%20Collaboration:%20A%20Hierarchical%20Multi-Agent%20Pickup%20and%20Delivery%20Framework&rft.jtitle=IEEE%20transactions%20on%20intelligent%20vehicles&rft.au=Gong,%20Xin&rft.date=2023-02-01&rft.volume=8&rft.issue=2&rft.spage=1664&rft.epage=1675&rft.pages=1664-1675&rft.issn=2379-8858&rft.eissn=2379-8904&rft.coden=ITIVBL&rft_id=info:doi/10.1109/TIV.2022.3172342&rft_dat=%3Cproquest_RIE%3E2789464825%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2789464825&rft_id=info:pmid/&rft_ieee_id=9767625&rfr_iscdi=true