Deep Saliency Smoothing Hashing for Drone Image Retrieval
Deep hashing algorithms are widely exploited in retrieval tasks due to its low storage and retrieval efficiency. Most of which focus on global feature learning, whilst neglecting local fine-grained features and saliency information for drone images. In this paper, we tackle these dilemmas with a nov...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2023-01, Vol.61, p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 61 |
creator | Chen, Yaxiong Huang, Jinghao Mou, Lichao Jin, Pu Xiong, Shengwu Zhu, Xiao Xiang |
description | Deep hashing algorithms are widely exploited in retrieval tasks due to its low storage and retrieval efficiency. Most of which focus on global feature learning, whilst neglecting local fine-grained features and saliency information for drone images. In this paper, we tackle these dilemmas with a novel Deep Saliency Smoothing Hashing (DSSH) algorithm, which can leverage saliency capture mechanism, distribution smoothing term, global features and local fine-grained features to learn effective hash codes for drone image retrieval. The DSSH algorithm first designs information extraction module to capture global features and local fine-grained features for drone images. Meanwhile, a saliency capture module is proposed to perform information interaction attention and visual enhancement attention, which can capture the saliency area of drone images effectively. On top of the two paths, a novel objective function is designed to preserve the similarity of hash codes, smooth the distribution of drone image datasets and reduce the quantization errors between hash codes and hash-like codes concurrently. Extensive experiments on the Drone Action Dataset and ERA Drone Dataset demonstrate that the DSSH algorithm can further improve the retrieval performance compared to other deep hashing algorithms. |
doi_str_mv | 10.1109/TGRS.2023.3255302 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2789362279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10065512</ieee_id><sourcerecordid>2789362279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-1939320e0a3d7d62efca4e583017ca3dd862ae1db2774888870139d1aafbdcca3</originalsourceid><addsrcrecordid>eNpNkMFqwkAQhpfSQq3tAxR6CPQcOzObzWaPRVsVhILa87ImExvRrN3Egm_fWD10Lj8M3z8DnxCPCANEMC_L8XwxICA5kKSUBLoSPVQqiyFNkmvRAzRpTJmhW3HXNBsATBTqnjAj5n20cNuK6_wYLXbet19VvY4mrvnL0odoFHzN0XTn1hzNuQ0V_7jtvbgp3bbhh0v2xef723I4iWcf4-nwdRbnZJI2RiONJGBwstBFSlzmLmGVSUCdd7siS8kxFivSOsm60YDSFOhcuSryjuiL5_PdffDfB25au_GHUHcvLenMyJRIm47CM5UH3zSBS7sP1c6Fo0WwJ0P2ZMieDNmLoa7zdO5UzPyPh1QpJPkLRXNg7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789362279</pqid></control><display><type>article</type><title>Deep Saliency Smoothing Hashing for Drone Image Retrieval</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Yaxiong ; Huang, Jinghao ; Mou, Lichao ; Jin, Pu ; Xiong, Shengwu ; Zhu, Xiao Xiang</creator><creatorcontrib>Chen, Yaxiong ; Huang, Jinghao ; Mou, Lichao ; Jin, Pu ; Xiong, Shengwu ; Zhu, Xiao Xiang</creatorcontrib><description>Deep hashing algorithms are widely exploited in retrieval tasks due to its low storage and retrieval efficiency. Most of which focus on global feature learning, whilst neglecting local fine-grained features and saliency information for drone images. In this paper, we tackle these dilemmas with a novel Deep Saliency Smoothing Hashing (DSSH) algorithm, which can leverage saliency capture mechanism, distribution smoothing term, global features and local fine-grained features to learn effective hash codes for drone image retrieval. The DSSH algorithm first designs information extraction module to capture global features and local fine-grained features for drone images. Meanwhile, a saliency capture module is proposed to perform information interaction attention and visual enhancement attention, which can capture the saliency area of drone images effectively. On top of the two paths, a novel objective function is designed to preserve the similarity of hash codes, smooth the distribution of drone image datasets and reduce the quantization errors between hash codes and hash-like codes concurrently. Extensive experiments on the Drone Action Dataset and ERA Drone Dataset demonstrate that the DSSH algorithm can further improve the retrieval performance compared to other deep hashing algorithms.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3255302</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Attention ; Codes ; Datasets ; Deep Hashing ; Distribution ; Drone Image Retrieval ; Drones ; Feature extraction ; Hash based algorithms ; Image enhancement ; Image retrieval ; Information retrieval ; Local Fine-grained Features ; Modules ; Objective function ; Remote sensing ; Salience ; Saliency Information ; Signal processing algorithms ; Smoothing ; Smoothing methods ; Storage ; Visual perception</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-1939320e0a3d7d62efca4e583017ca3dd862ae1db2774888870139d1aafbdcca3</citedby><cites>FETCH-LOGICAL-c294t-1939320e0a3d7d62efca4e583017ca3dd862ae1db2774888870139d1aafbdcca3</cites><orcidid>0000-0001-8407-6413 ; 0000-0002-2903-6723 ; 0000-0001-6327-017X ; 0000-0001-5530-3613 ; 0000-0002-4006-7029 ; 0009-0001-3362-3023</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10065512$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10065512$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Yaxiong</creatorcontrib><creatorcontrib>Huang, Jinghao</creatorcontrib><creatorcontrib>Mou, Lichao</creatorcontrib><creatorcontrib>Jin, Pu</creatorcontrib><creatorcontrib>Xiong, Shengwu</creatorcontrib><creatorcontrib>Zhu, Xiao Xiang</creatorcontrib><title>Deep Saliency Smoothing Hashing for Drone Image Retrieval</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Deep hashing algorithms are widely exploited in retrieval tasks due to its low storage and retrieval efficiency. Most of which focus on global feature learning, whilst neglecting local fine-grained features and saliency information for drone images. In this paper, we tackle these dilemmas with a novel Deep Saliency Smoothing Hashing (DSSH) algorithm, which can leverage saliency capture mechanism, distribution smoothing term, global features and local fine-grained features to learn effective hash codes for drone image retrieval. The DSSH algorithm first designs information extraction module to capture global features and local fine-grained features for drone images. Meanwhile, a saliency capture module is proposed to perform information interaction attention and visual enhancement attention, which can capture the saliency area of drone images effectively. On top of the two paths, a novel objective function is designed to preserve the similarity of hash codes, smooth the distribution of drone image datasets and reduce the quantization errors between hash codes and hash-like codes concurrently. Extensive experiments on the Drone Action Dataset and ERA Drone Dataset demonstrate that the DSSH algorithm can further improve the retrieval performance compared to other deep hashing algorithms.</description><subject>Algorithms</subject><subject>Attention</subject><subject>Codes</subject><subject>Datasets</subject><subject>Deep Hashing</subject><subject>Distribution</subject><subject>Drone Image Retrieval</subject><subject>Drones</subject><subject>Feature extraction</subject><subject>Hash based algorithms</subject><subject>Image enhancement</subject><subject>Image retrieval</subject><subject>Information retrieval</subject><subject>Local Fine-grained Features</subject><subject>Modules</subject><subject>Objective function</subject><subject>Remote sensing</subject><subject>Salience</subject><subject>Saliency Information</subject><subject>Signal processing algorithms</subject><subject>Smoothing</subject><subject>Smoothing methods</subject><subject>Storage</subject><subject>Visual perception</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFqwkAQhpfSQq3tAxR6CPQcOzObzWaPRVsVhILa87ImExvRrN3Egm_fWD10Lj8M3z8DnxCPCANEMC_L8XwxICA5kKSUBLoSPVQqiyFNkmvRAzRpTJmhW3HXNBsATBTqnjAj5n20cNuK6_wYLXbet19VvY4mrvnL0odoFHzN0XTn1hzNuQ0V_7jtvbgp3bbhh0v2xef723I4iWcf4-nwdRbnZJI2RiONJGBwstBFSlzmLmGVSUCdd7siS8kxFivSOsm60YDSFOhcuSryjuiL5_PdffDfB25au_GHUHcvLenMyJRIm47CM5UH3zSBS7sP1c6Fo0WwJ0P2ZMieDNmLoa7zdO5UzPyPh1QpJPkLRXNg7g</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Chen, Yaxiong</creator><creator>Huang, Jinghao</creator><creator>Mou, Lichao</creator><creator>Jin, Pu</creator><creator>Xiong, Shengwu</creator><creator>Zhu, Xiao Xiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8407-6413</orcidid><orcidid>https://orcid.org/0000-0002-2903-6723</orcidid><orcidid>https://orcid.org/0000-0001-6327-017X</orcidid><orcidid>https://orcid.org/0000-0001-5530-3613</orcidid><orcidid>https://orcid.org/0000-0002-4006-7029</orcidid><orcidid>https://orcid.org/0009-0001-3362-3023</orcidid></search><sort><creationdate>20230101</creationdate><title>Deep Saliency Smoothing Hashing for Drone Image Retrieval</title><author>Chen, Yaxiong ; Huang, Jinghao ; Mou, Lichao ; Jin, Pu ; Xiong, Shengwu ; Zhu, Xiao Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-1939320e0a3d7d62efca4e583017ca3dd862ae1db2774888870139d1aafbdcca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Attention</topic><topic>Codes</topic><topic>Datasets</topic><topic>Deep Hashing</topic><topic>Distribution</topic><topic>Drone Image Retrieval</topic><topic>Drones</topic><topic>Feature extraction</topic><topic>Hash based algorithms</topic><topic>Image enhancement</topic><topic>Image retrieval</topic><topic>Information retrieval</topic><topic>Local Fine-grained Features</topic><topic>Modules</topic><topic>Objective function</topic><topic>Remote sensing</topic><topic>Salience</topic><topic>Saliency Information</topic><topic>Signal processing algorithms</topic><topic>Smoothing</topic><topic>Smoothing methods</topic><topic>Storage</topic><topic>Visual perception</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yaxiong</creatorcontrib><creatorcontrib>Huang, Jinghao</creatorcontrib><creatorcontrib>Mou, Lichao</creatorcontrib><creatorcontrib>Jin, Pu</creatorcontrib><creatorcontrib>Xiong, Shengwu</creatorcontrib><creatorcontrib>Zhu, Xiao Xiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Yaxiong</au><au>Huang, Jinghao</au><au>Mou, Lichao</au><au>Jin, Pu</au><au>Xiong, Shengwu</au><au>Zhu, Xiao Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Saliency Smoothing Hashing for Drone Image Retrieval</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>61</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Deep hashing algorithms are widely exploited in retrieval tasks due to its low storage and retrieval efficiency. Most of which focus on global feature learning, whilst neglecting local fine-grained features and saliency information for drone images. In this paper, we tackle these dilemmas with a novel Deep Saliency Smoothing Hashing (DSSH) algorithm, which can leverage saliency capture mechanism, distribution smoothing term, global features and local fine-grained features to learn effective hash codes for drone image retrieval. The DSSH algorithm first designs information extraction module to capture global features and local fine-grained features for drone images. Meanwhile, a saliency capture module is proposed to perform information interaction attention and visual enhancement attention, which can capture the saliency area of drone images effectively. On top of the two paths, a novel objective function is designed to preserve the similarity of hash codes, smooth the distribution of drone image datasets and reduce the quantization errors between hash codes and hash-like codes concurrently. Extensive experiments on the Drone Action Dataset and ERA Drone Dataset demonstrate that the DSSH algorithm can further improve the retrieval performance compared to other deep hashing algorithms.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3255302</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8407-6413</orcidid><orcidid>https://orcid.org/0000-0002-2903-6723</orcidid><orcidid>https://orcid.org/0000-0001-6327-017X</orcidid><orcidid>https://orcid.org/0000-0001-5530-3613</orcidid><orcidid>https://orcid.org/0000-0002-4006-7029</orcidid><orcidid>https://orcid.org/0009-0001-3362-3023</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_journals_2789362279 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Attention Codes Datasets Deep Hashing Distribution Drone Image Retrieval Drones Feature extraction Hash based algorithms Image enhancement Image retrieval Information retrieval Local Fine-grained Features Modules Objective function Remote sensing Salience Saliency Information Signal processing algorithms Smoothing Smoothing methods Storage Visual perception |
title | Deep Saliency Smoothing Hashing for Drone Image Retrieval |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T06%3A42%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Saliency%20Smoothing%20Hashing%20for%20Drone%20Image%20Retrieval&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Chen,%20Yaxiong&rft.date=2023-01-01&rft.volume=61&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3255302&rft_dat=%3Cproquest_RIE%3E2789362279%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2789362279&rft_id=info:pmid/&rft_ieee_id=10065512&rfr_iscdi=true |