Deep Saliency Smoothing Hashing for Drone Image Retrieval

Deep hashing algorithms are widely exploited in retrieval tasks due to its low storage and retrieval efficiency. Most of which focus on global feature learning, whilst neglecting local fine-grained features and saliency information for drone images. In this paper, we tackle these dilemmas with a nov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2023-01, Vol.61, p.1-1
Hauptverfasser: Chen, Yaxiong, Huang, Jinghao, Mou, Lichao, Jin, Pu, Xiong, Shengwu, Zhu, Xiao Xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 61
creator Chen, Yaxiong
Huang, Jinghao
Mou, Lichao
Jin, Pu
Xiong, Shengwu
Zhu, Xiao Xiang
description Deep hashing algorithms are widely exploited in retrieval tasks due to its low storage and retrieval efficiency. Most of which focus on global feature learning, whilst neglecting local fine-grained features and saliency information for drone images. In this paper, we tackle these dilemmas with a novel Deep Saliency Smoothing Hashing (DSSH) algorithm, which can leverage saliency capture mechanism, distribution smoothing term, global features and local fine-grained features to learn effective hash codes for drone image retrieval. The DSSH algorithm first designs information extraction module to capture global features and local fine-grained features for drone images. Meanwhile, a saliency capture module is proposed to perform information interaction attention and visual enhancement attention, which can capture the saliency area of drone images effectively. On top of the two paths, a novel objective function is designed to preserve the similarity of hash codes, smooth the distribution of drone image datasets and reduce the quantization errors between hash codes and hash-like codes concurrently. Extensive experiments on the Drone Action Dataset and ERA Drone Dataset demonstrate that the DSSH algorithm can further improve the retrieval performance compared to other deep hashing algorithms.
doi_str_mv 10.1109/TGRS.2023.3255302
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2789362279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10065512</ieee_id><sourcerecordid>2789362279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-1939320e0a3d7d62efca4e583017ca3dd862ae1db2774888870139d1aafbdcca3</originalsourceid><addsrcrecordid>eNpNkMFqwkAQhpfSQq3tAxR6CPQcOzObzWaPRVsVhILa87ImExvRrN3Egm_fWD10Lj8M3z8DnxCPCANEMC_L8XwxICA5kKSUBLoSPVQqiyFNkmvRAzRpTJmhW3HXNBsATBTqnjAj5n20cNuK6_wYLXbet19VvY4mrvnL0odoFHzN0XTn1hzNuQ0V_7jtvbgp3bbhh0v2xef723I4iWcf4-nwdRbnZJI2RiONJGBwstBFSlzmLmGVSUCdd7siS8kxFivSOsm60YDSFOhcuSryjuiL5_PdffDfB25au_GHUHcvLenMyJRIm47CM5UH3zSBS7sP1c6Fo0WwJ0P2ZMieDNmLoa7zdO5UzPyPh1QpJPkLRXNg7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789362279</pqid></control><display><type>article</type><title>Deep Saliency Smoothing Hashing for Drone Image Retrieval</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Yaxiong ; Huang, Jinghao ; Mou, Lichao ; Jin, Pu ; Xiong, Shengwu ; Zhu, Xiao Xiang</creator><creatorcontrib>Chen, Yaxiong ; Huang, Jinghao ; Mou, Lichao ; Jin, Pu ; Xiong, Shengwu ; Zhu, Xiao Xiang</creatorcontrib><description>Deep hashing algorithms are widely exploited in retrieval tasks due to its low storage and retrieval efficiency. Most of which focus on global feature learning, whilst neglecting local fine-grained features and saliency information for drone images. In this paper, we tackle these dilemmas with a novel Deep Saliency Smoothing Hashing (DSSH) algorithm, which can leverage saliency capture mechanism, distribution smoothing term, global features and local fine-grained features to learn effective hash codes for drone image retrieval. The DSSH algorithm first designs information extraction module to capture global features and local fine-grained features for drone images. Meanwhile, a saliency capture module is proposed to perform information interaction attention and visual enhancement attention, which can capture the saliency area of drone images effectively. On top of the two paths, a novel objective function is designed to preserve the similarity of hash codes, smooth the distribution of drone image datasets and reduce the quantization errors between hash codes and hash-like codes concurrently. Extensive experiments on the Drone Action Dataset and ERA Drone Dataset demonstrate that the DSSH algorithm can further improve the retrieval performance compared to other deep hashing algorithms.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3255302</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Attention ; Codes ; Datasets ; Deep Hashing ; Distribution ; Drone Image Retrieval ; Drones ; Feature extraction ; Hash based algorithms ; Image enhancement ; Image retrieval ; Information retrieval ; Local Fine-grained Features ; Modules ; Objective function ; Remote sensing ; Salience ; Saliency Information ; Signal processing algorithms ; Smoothing ; Smoothing methods ; Storage ; Visual perception</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-1939320e0a3d7d62efca4e583017ca3dd862ae1db2774888870139d1aafbdcca3</citedby><cites>FETCH-LOGICAL-c294t-1939320e0a3d7d62efca4e583017ca3dd862ae1db2774888870139d1aafbdcca3</cites><orcidid>0000-0001-8407-6413 ; 0000-0002-2903-6723 ; 0000-0001-6327-017X ; 0000-0001-5530-3613 ; 0000-0002-4006-7029 ; 0009-0001-3362-3023</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10065512$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10065512$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Yaxiong</creatorcontrib><creatorcontrib>Huang, Jinghao</creatorcontrib><creatorcontrib>Mou, Lichao</creatorcontrib><creatorcontrib>Jin, Pu</creatorcontrib><creatorcontrib>Xiong, Shengwu</creatorcontrib><creatorcontrib>Zhu, Xiao Xiang</creatorcontrib><title>Deep Saliency Smoothing Hashing for Drone Image Retrieval</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Deep hashing algorithms are widely exploited in retrieval tasks due to its low storage and retrieval efficiency. Most of which focus on global feature learning, whilst neglecting local fine-grained features and saliency information for drone images. In this paper, we tackle these dilemmas with a novel Deep Saliency Smoothing Hashing (DSSH) algorithm, which can leverage saliency capture mechanism, distribution smoothing term, global features and local fine-grained features to learn effective hash codes for drone image retrieval. The DSSH algorithm first designs information extraction module to capture global features and local fine-grained features for drone images. Meanwhile, a saliency capture module is proposed to perform information interaction attention and visual enhancement attention, which can capture the saliency area of drone images effectively. On top of the two paths, a novel objective function is designed to preserve the similarity of hash codes, smooth the distribution of drone image datasets and reduce the quantization errors between hash codes and hash-like codes concurrently. Extensive experiments on the Drone Action Dataset and ERA Drone Dataset demonstrate that the DSSH algorithm can further improve the retrieval performance compared to other deep hashing algorithms.</description><subject>Algorithms</subject><subject>Attention</subject><subject>Codes</subject><subject>Datasets</subject><subject>Deep Hashing</subject><subject>Distribution</subject><subject>Drone Image Retrieval</subject><subject>Drones</subject><subject>Feature extraction</subject><subject>Hash based algorithms</subject><subject>Image enhancement</subject><subject>Image retrieval</subject><subject>Information retrieval</subject><subject>Local Fine-grained Features</subject><subject>Modules</subject><subject>Objective function</subject><subject>Remote sensing</subject><subject>Salience</subject><subject>Saliency Information</subject><subject>Signal processing algorithms</subject><subject>Smoothing</subject><subject>Smoothing methods</subject><subject>Storage</subject><subject>Visual perception</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFqwkAQhpfSQq3tAxR6CPQcOzObzWaPRVsVhILa87ImExvRrN3Egm_fWD10Lj8M3z8DnxCPCANEMC_L8XwxICA5kKSUBLoSPVQqiyFNkmvRAzRpTJmhW3HXNBsATBTqnjAj5n20cNuK6_wYLXbet19VvY4mrvnL0odoFHzN0XTn1hzNuQ0V_7jtvbgp3bbhh0v2xef723I4iWcf4-nwdRbnZJI2RiONJGBwstBFSlzmLmGVSUCdd7siS8kxFivSOsm60YDSFOhcuSryjuiL5_PdffDfB25au_GHUHcvLenMyJRIm47CM5UH3zSBS7sP1c6Fo0WwJ0P2ZMieDNmLoa7zdO5UzPyPh1QpJPkLRXNg7g</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Chen, Yaxiong</creator><creator>Huang, Jinghao</creator><creator>Mou, Lichao</creator><creator>Jin, Pu</creator><creator>Xiong, Shengwu</creator><creator>Zhu, Xiao Xiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8407-6413</orcidid><orcidid>https://orcid.org/0000-0002-2903-6723</orcidid><orcidid>https://orcid.org/0000-0001-6327-017X</orcidid><orcidid>https://orcid.org/0000-0001-5530-3613</orcidid><orcidid>https://orcid.org/0000-0002-4006-7029</orcidid><orcidid>https://orcid.org/0009-0001-3362-3023</orcidid></search><sort><creationdate>20230101</creationdate><title>Deep Saliency Smoothing Hashing for Drone Image Retrieval</title><author>Chen, Yaxiong ; Huang, Jinghao ; Mou, Lichao ; Jin, Pu ; Xiong, Shengwu ; Zhu, Xiao Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-1939320e0a3d7d62efca4e583017ca3dd862ae1db2774888870139d1aafbdcca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Attention</topic><topic>Codes</topic><topic>Datasets</topic><topic>Deep Hashing</topic><topic>Distribution</topic><topic>Drone Image Retrieval</topic><topic>Drones</topic><topic>Feature extraction</topic><topic>Hash based algorithms</topic><topic>Image enhancement</topic><topic>Image retrieval</topic><topic>Information retrieval</topic><topic>Local Fine-grained Features</topic><topic>Modules</topic><topic>Objective function</topic><topic>Remote sensing</topic><topic>Salience</topic><topic>Saliency Information</topic><topic>Signal processing algorithms</topic><topic>Smoothing</topic><topic>Smoothing methods</topic><topic>Storage</topic><topic>Visual perception</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yaxiong</creatorcontrib><creatorcontrib>Huang, Jinghao</creatorcontrib><creatorcontrib>Mou, Lichao</creatorcontrib><creatorcontrib>Jin, Pu</creatorcontrib><creatorcontrib>Xiong, Shengwu</creatorcontrib><creatorcontrib>Zhu, Xiao Xiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Yaxiong</au><au>Huang, Jinghao</au><au>Mou, Lichao</au><au>Jin, Pu</au><au>Xiong, Shengwu</au><au>Zhu, Xiao Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Saliency Smoothing Hashing for Drone Image Retrieval</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>61</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Deep hashing algorithms are widely exploited in retrieval tasks due to its low storage and retrieval efficiency. Most of which focus on global feature learning, whilst neglecting local fine-grained features and saliency information for drone images. In this paper, we tackle these dilemmas with a novel Deep Saliency Smoothing Hashing (DSSH) algorithm, which can leverage saliency capture mechanism, distribution smoothing term, global features and local fine-grained features to learn effective hash codes for drone image retrieval. The DSSH algorithm first designs information extraction module to capture global features and local fine-grained features for drone images. Meanwhile, a saliency capture module is proposed to perform information interaction attention and visual enhancement attention, which can capture the saliency area of drone images effectively. On top of the two paths, a novel objective function is designed to preserve the similarity of hash codes, smooth the distribution of drone image datasets and reduce the quantization errors between hash codes and hash-like codes concurrently. Extensive experiments on the Drone Action Dataset and ERA Drone Dataset demonstrate that the DSSH algorithm can further improve the retrieval performance compared to other deep hashing algorithms.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3255302</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8407-6413</orcidid><orcidid>https://orcid.org/0000-0002-2903-6723</orcidid><orcidid>https://orcid.org/0000-0001-6327-017X</orcidid><orcidid>https://orcid.org/0000-0001-5530-3613</orcidid><orcidid>https://orcid.org/0000-0002-4006-7029</orcidid><orcidid>https://orcid.org/0009-0001-3362-3023</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_2789362279
source IEEE Electronic Library (IEL)
subjects Algorithms
Attention
Codes
Datasets
Deep Hashing
Distribution
Drone Image Retrieval
Drones
Feature extraction
Hash based algorithms
Image enhancement
Image retrieval
Information retrieval
Local Fine-grained Features
Modules
Objective function
Remote sensing
Salience
Saliency Information
Signal processing algorithms
Smoothing
Smoothing methods
Storage
Visual perception
title Deep Saliency Smoothing Hashing for Drone Image Retrieval
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T06%3A42%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Saliency%20Smoothing%20Hashing%20for%20Drone%20Image%20Retrieval&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Chen,%20Yaxiong&rft.date=2023-01-01&rft.volume=61&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3255302&rft_dat=%3Cproquest_RIE%3E2789362279%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2789362279&rft_id=info:pmid/&rft_ieee_id=10065512&rfr_iscdi=true