AN INTENSIONAL LEIBNIZ SEMANTICS FOR ARISTOTELIAN LOGIC

Since Frege’s predicate logical transcription of Aristotelian categorical logic, the standard semantics of Aristotelian logic considers terms as standing for sets of individuals. From a philosophical standpoint, this extensional model poses problems: There exist serious doubts that Aristotle’s terms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The review of symbolic logic 2010-06, Vol.3 (2), p.262-272
1. Verfasser: GLASHOFF, KLAUS
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 272
container_issue 2
container_start_page 262
container_title The review of symbolic logic
container_volume 3
creator GLASHOFF, KLAUS
description Since Frege’s predicate logical transcription of Aristotelian categorical logic, the standard semantics of Aristotelian logic considers terms as standing for sets of individuals. From a philosophical standpoint, this extensional model poses problems: There exist serious doubts that Aristotle’s terms were meant to refer always to sets, that is, entities composed of individuals. Classical philosophy up to Leibniz and Kant had a different view on this question—they looked at terms as standing for concepts (“Begriffe”). In 1972, Corcoran presented a formal system for Aristotelian logic containing a calculus of natural deduction, while, with respect to semantics, he still made use of an extensional interpretation. In this paper we deal with a simple intensional semantics for Corcoran’s syntax—intensional in the sense that no individuals are needed for the construction of a complete Tarski model of Aristotelian syntax. Instead, we view concepts as containing or excluding other, “higher” concepts—corresponding to the idea which Leibniz used in the construction of his characteristic numbers. Thus, this paper is an addendum to Corcoran’s work, furnishing his formal syntax with an adequate semantics which is free from presuppositions which have entered into modern interpretations of Aristotle’s theory via predicate logic.
doi_str_mv 10.1017/S1755020309990396
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2789324127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1755020309990396</cupid><sourcerecordid>2789324127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-4fddbf65a18514fe50b7ced4a6eae6928b9a8520f5ec43e0aec055bc5d39d0af3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqXwA9giMQfOdhzHY4hSsBQcqQkLi-XENmpFaXHagX9PSisYENOd7r73nvQQusZwiwHzuwZzxoAABSEEUJGeoMn-FAPB-PRnB3qOLoZhCZASQrMJ4rmKpGpL1cha5VVUlfJeyZeoKZ9y1cqiiWb1PMrnsmnrtqzkiFf1gywu0Zk3b4O7Os4pep6VbfEYf3_zKu4p5ts48dZ2PmUGZwwn3jHoeO9sYlJnXCpI1gmTMQKeuT6hDozrgbGuZ5YKC8bTKbo5-G7C-mPnhq1ernfhfYzUhGeCkgQTPlL4QPVhPQzBeb0Ji5UJnxqD3vej__QzauhRY1ZdWNhX92v9v-oLP8thtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789324127</pqid></control><display><type>article</type><title>AN INTENSIONAL LEIBNIZ SEMANTICS FOR ARISTOTELIAN LOGIC</title><source>Cambridge University Press Journals Complete</source><creator>GLASHOFF, KLAUS</creator><creatorcontrib>GLASHOFF, KLAUS</creatorcontrib><description>Since Frege’s predicate logical transcription of Aristotelian categorical logic, the standard semantics of Aristotelian logic considers terms as standing for sets of individuals. From a philosophical standpoint, this extensional model poses problems: There exist serious doubts that Aristotle’s terms were meant to refer always to sets, that is, entities composed of individuals. Classical philosophy up to Leibniz and Kant had a different view on this question—they looked at terms as standing for concepts (“Begriffe”). In 1972, Corcoran presented a formal system for Aristotelian logic containing a calculus of natural deduction, while, with respect to semantics, he still made use of an extensional interpretation. In this paper we deal with a simple intensional semantics for Corcoran’s syntax—intensional in the sense that no individuals are needed for the construction of a complete Tarski model of Aristotelian syntax. Instead, we view concepts as containing or excluding other, “higher” concepts—corresponding to the idea which Leibniz used in the construction of his characteristic numbers. Thus, this paper is an addendum to Corcoran’s work, furnishing his formal syntax with an adequate semantics which is free from presuppositions which have entered into modern interpretations of Aristotle’s theory via predicate logic.</description><identifier>ISSN: 1755-0203</identifier><identifier>EISSN: 1755-0211</identifier><identifier>DOI: 10.1017/S1755020309990396</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Deduction ; Logic ; Philosophy ; Predicate logic ; Semantics ; Syntax</subject><ispartof>The review of symbolic logic, 2010-06, Vol.3 (2), p.262-272</ispartof><rights>Copyright © Association for Symbolic Logic 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-4fddbf65a18514fe50b7ced4a6eae6928b9a8520f5ec43e0aec055bc5d39d0af3</citedby><cites>FETCH-LOGICAL-c317t-4fddbf65a18514fe50b7ced4a6eae6928b9a8520f5ec43e0aec055bc5d39d0af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1755020309990396/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>GLASHOFF, KLAUS</creatorcontrib><title>AN INTENSIONAL LEIBNIZ SEMANTICS FOR ARISTOTELIAN LOGIC</title><title>The review of symbolic logic</title><addtitle>The Review of Symbolic Logic</addtitle><description>Since Frege’s predicate logical transcription of Aristotelian categorical logic, the standard semantics of Aristotelian logic considers terms as standing for sets of individuals. From a philosophical standpoint, this extensional model poses problems: There exist serious doubts that Aristotle’s terms were meant to refer always to sets, that is, entities composed of individuals. Classical philosophy up to Leibniz and Kant had a different view on this question—they looked at terms as standing for concepts (“Begriffe”). In 1972, Corcoran presented a formal system for Aristotelian logic containing a calculus of natural deduction, while, with respect to semantics, he still made use of an extensional interpretation. In this paper we deal with a simple intensional semantics for Corcoran’s syntax—intensional in the sense that no individuals are needed for the construction of a complete Tarski model of Aristotelian syntax. Instead, we view concepts as containing or excluding other, “higher” concepts—corresponding to the idea which Leibniz used in the construction of his characteristic numbers. Thus, this paper is an addendum to Corcoran’s work, furnishing his formal syntax with an adequate semantics which is free from presuppositions which have entered into modern interpretations of Aristotle’s theory via predicate logic.</description><subject>Deduction</subject><subject>Logic</subject><subject>Philosophy</subject><subject>Predicate logic</subject><subject>Semantics</subject><subject>Syntax</subject><issn>1755-0203</issn><issn>1755-0211</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kDFPwzAQhS0EEqXwA9giMQfOdhzHY4hSsBQcqQkLi-XENmpFaXHagX9PSisYENOd7r73nvQQusZwiwHzuwZzxoAABSEEUJGeoMn-FAPB-PRnB3qOLoZhCZASQrMJ4rmKpGpL1cha5VVUlfJeyZeoKZ9y1cqiiWb1PMrnsmnrtqzkiFf1gywu0Zk3b4O7Os4pep6VbfEYf3_zKu4p5ts48dZ2PmUGZwwn3jHoeO9sYlJnXCpI1gmTMQKeuT6hDozrgbGuZ5YKC8bTKbo5-G7C-mPnhq1ernfhfYzUhGeCkgQTPlL4QPVhPQzBeb0Ji5UJnxqD3vej__QzauhRY1ZdWNhX92v9v-oLP8thtQ</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>GLASHOFF, KLAUS</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>201006</creationdate><title>AN INTENSIONAL LEIBNIZ SEMANTICS FOR ARISTOTELIAN LOGIC</title><author>GLASHOFF, KLAUS</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-4fddbf65a18514fe50b7ced4a6eae6928b9a8520f5ec43e0aec055bc5d39d0af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Deduction</topic><topic>Logic</topic><topic>Philosophy</topic><topic>Predicate logic</topic><topic>Semantics</topic><topic>Syntax</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GLASHOFF, KLAUS</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>The review of symbolic logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GLASHOFF, KLAUS</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AN INTENSIONAL LEIBNIZ SEMANTICS FOR ARISTOTELIAN LOGIC</atitle><jtitle>The review of symbolic logic</jtitle><addtitle>The Review of Symbolic Logic</addtitle><date>2010-06</date><risdate>2010</risdate><volume>3</volume><issue>2</issue><spage>262</spage><epage>272</epage><pages>262-272</pages><issn>1755-0203</issn><eissn>1755-0211</eissn><abstract>Since Frege’s predicate logical transcription of Aristotelian categorical logic, the standard semantics of Aristotelian logic considers terms as standing for sets of individuals. From a philosophical standpoint, this extensional model poses problems: There exist serious doubts that Aristotle’s terms were meant to refer always to sets, that is, entities composed of individuals. Classical philosophy up to Leibniz and Kant had a different view on this question—they looked at terms as standing for concepts (“Begriffe”). In 1972, Corcoran presented a formal system for Aristotelian logic containing a calculus of natural deduction, while, with respect to semantics, he still made use of an extensional interpretation. In this paper we deal with a simple intensional semantics for Corcoran’s syntax—intensional in the sense that no individuals are needed for the construction of a complete Tarski model of Aristotelian syntax. Instead, we view concepts as containing or excluding other, “higher” concepts—corresponding to the idea which Leibniz used in the construction of his characteristic numbers. Thus, this paper is an addendum to Corcoran’s work, furnishing his formal syntax with an adequate semantics which is free from presuppositions which have entered into modern interpretations of Aristotle’s theory via predicate logic.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/S1755020309990396</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1755-0203
ispartof The review of symbolic logic, 2010-06, Vol.3 (2), p.262-272
issn 1755-0203
1755-0211
language eng
recordid cdi_proquest_journals_2789324127
source Cambridge University Press Journals Complete
subjects Deduction
Logic
Philosophy
Predicate logic
Semantics
Syntax
title AN INTENSIONAL LEIBNIZ SEMANTICS FOR ARISTOTELIAN LOGIC
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A13%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AN%20INTENSIONAL%20LEIBNIZ%20SEMANTICS%20FOR%20ARISTOTELIAN%20LOGIC&rft.jtitle=The%20review%20of%20symbolic%20logic&rft.au=GLASHOFF,%20KLAUS&rft.date=2010-06&rft.volume=3&rft.issue=2&rft.spage=262&rft.epage=272&rft.pages=262-272&rft.issn=1755-0203&rft.eissn=1755-0211&rft_id=info:doi/10.1017/S1755020309990396&rft_dat=%3Cproquest_cross%3E2789324127%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2789324127&rft_id=info:pmid/&rft_cupid=10_1017_S1755020309990396&rfr_iscdi=true