Equalization of Shooting Conditions Based on Spectral Models for the Needs of Precision Agriculture Using UAVs
Unmanned aerial vehicles (UAVs) are widely used as data sources for monitoring of farm lands. As distinct from satellite imagery, in which satellites often have a sun-synchronous trajectory, UAV data can be characterized by significant variability of shooting conditions, which complicates data analy...
Gespeichert in:
Veröffentlicht in: | Journal of communications technology & electronics 2022-12, Vol.67 (Suppl 2), p.S283-S289 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | S289 |
---|---|
container_issue | Suppl 2 |
container_start_page | S283 |
container_title | Journal of communications technology & electronics |
container_volume | 67 |
creator | Pavlova, M. A. Sidorchuk, D. S. Kushchev, D. O. Bocharov, D. A. Nikolaev, D. P. |
description | Unmanned aerial vehicles (UAVs) are widely used as data sources for monitoring of farm lands. As distinct from satellite imagery, in which satellites often have a sun-synchronous trajectory, UAV data can be characterized by significant variability of shooting conditions, which complicates data analytics. We consider the problem of equalization of the shooting conditions for a hyperspectral image using specific spatial image zones (clues), for which the values obtained under the target conditions are known. It is shown that the affine model of the irradiance incoming to a sensor on the test dataset is more accurate than the linear one. For analytical calculation of the parameters of the affine model, the presence of instability in the spectral regions, in which the images of clue regions have close values, is shown. A regularized numerical method that is free of such a disadvantage is proposed for estimation of the parameters of the affine model. The affine model is used to propose a new equalization method that makes it possible to bring images obtained under original conditions closer to images obtained under target conditions, reducing the error by a factor of 4.6. For the experimental study of the models and the equalization method, we use a specific dataset consisting of the AVIRIS hyperspectral images obtained for a single area under significantly different conditions for illumination. |
doi_str_mv | 10.1134/S1064226922140066 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2789262641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A742506207</galeid><sourcerecordid>A742506207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-fb3fc5e01cb9282761b46a44f8b2c17e1cc1a37e70e6b7b08462487d295677e43</originalsourceid><addsrcrecordid>eNp1kcFq3DAQQE1ooWnaD-hNkFOhTiRZluzjdkmbQNKWbrdXI8sjr4JjbTQyJP36yjiQLKUIJDHz3ojRZNkHRs8YK8T5hlEpOJc150xQKuVRdszKssxlWapX6Z7S-Zx_k71FvKW0qCUtjrPx4n7Sg_ujo_Mj8ZZsdt5HN_Zk7cfOzVEknzVCR1J-swcTgx7Ije9gQGJ9IHEH5BtAh7P9I4BxOJda9cGZaYhTALLFueB29RvfZa-tHhDeP50n2fbLxa_1ZX79_evVenWdG8FlzG1bWFMCZaatecWVZK2QWghbtdwwBcwYpgsFioJsVUsrIbmoVMfrUioFojjJTpe6--DvJ8DY3PopjOnJhquq5pJLwRJ1tlC9HqBxo_WpOZNWB3fO-BGsS_GVErykklOVhI8HQmIiPMReT4jN1ebnIfvpBdtO6Q8A04au30VclAOcLbgJHjGAbfbB3enw2DDazCNu_hlxcvjiYGLHHsJzl_-X_gL2BaYC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789262641</pqid></control><display><type>article</type><title>Equalization of Shooting Conditions Based on Spectral Models for the Needs of Precision Agriculture Using UAVs</title><source>SpringerLink Journals - AutoHoldings</source><creator>Pavlova, M. A. ; Sidorchuk, D. S. ; Kushchev, D. O. ; Bocharov, D. A. ; Nikolaev, D. P.</creator><creatorcontrib>Pavlova, M. A. ; Sidorchuk, D. S. ; Kushchev, D. O. ; Bocharov, D. A. ; Nikolaev, D. P.</creatorcontrib><description>Unmanned aerial vehicles (UAVs) are widely used as data sources for monitoring of farm lands. As distinct from satellite imagery, in which satellites often have a sun-synchronous trajectory, UAV data can be characterized by significant variability of shooting conditions, which complicates data analytics. We consider the problem of equalization of the shooting conditions for a hyperspectral image using specific spatial image zones (clues), for which the values obtained under the target conditions are known. It is shown that the affine model of the irradiance incoming to a sensor on the test dataset is more accurate than the linear one. For analytical calculation of the parameters of the affine model, the presence of instability in the spectral regions, in which the images of clue regions have close values, is shown. A regularized numerical method that is free of such a disadvantage is proposed for estimation of the parameters of the affine model. The affine model is used to propose a new equalization method that makes it possible to bring images obtained under original conditions closer to images obtained under target conditions, reducing the error by a factor of 4.6. For the experimental study of the models and the equalization method, we use a specific dataset consisting of the AVIRIS hyperspectral images obtained for a single area under significantly different conditions for illumination.</description><identifier>ISSN: 1064-2269</identifier><identifier>EISSN: 1555-6557</identifier><identifier>DOI: 10.1134/S1064226922140066</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Communications Engineering ; Datasets ; Drone aircraft ; Engineering ; Equalization ; Error reduction ; Hyperspectral imaging ; Irradiance ; Mathematical models ; Mathematical Models and Computational Methods ; Networks ; Numerical methods ; Parameters ; Remote sensing ; Satellite imagery ; Satellites ; Sensors ; Shooting ; Unmanned aerial vehicles</subject><ispartof>Journal of communications technology & electronics, 2022-12, Vol.67 (Suppl 2), p.S283-S289</ispartof><rights>Pleiades Publishing, Inc. 2022. ISSN 1064-2269, Journal of Communications Technology and Electronics, 2022, Vol. 67, Suppl. 2, pp. S283–S289. © Pleiades Publishing, Inc., 2022. Russian Text © The Author(s), 2022, published in Informatsionnye Protsessy, 2022, Vol. 22, No. 4, pp. 404–413.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-fb3fc5e01cb9282761b46a44f8b2c17e1cc1a37e70e6b7b08462487d295677e43</citedby><cites>FETCH-LOGICAL-c426t-fb3fc5e01cb9282761b46a44f8b2c17e1cc1a37e70e6b7b08462487d295677e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1064226922140066$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1064226922140066$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Pavlova, M. A.</creatorcontrib><creatorcontrib>Sidorchuk, D. S.</creatorcontrib><creatorcontrib>Kushchev, D. O.</creatorcontrib><creatorcontrib>Bocharov, D. A.</creatorcontrib><creatorcontrib>Nikolaev, D. P.</creatorcontrib><title>Equalization of Shooting Conditions Based on Spectral Models for the Needs of Precision Agriculture Using UAVs</title><title>Journal of communications technology & electronics</title><addtitle>J. Commun. Technol. Electron</addtitle><description>Unmanned aerial vehicles (UAVs) are widely used as data sources for monitoring of farm lands. As distinct from satellite imagery, in which satellites often have a sun-synchronous trajectory, UAV data can be characterized by significant variability of shooting conditions, which complicates data analytics. We consider the problem of equalization of the shooting conditions for a hyperspectral image using specific spatial image zones (clues), for which the values obtained under the target conditions are known. It is shown that the affine model of the irradiance incoming to a sensor on the test dataset is more accurate than the linear one. For analytical calculation of the parameters of the affine model, the presence of instability in the spectral regions, in which the images of clue regions have close values, is shown. A regularized numerical method that is free of such a disadvantage is proposed for estimation of the parameters of the affine model. The affine model is used to propose a new equalization method that makes it possible to bring images obtained under original conditions closer to images obtained under target conditions, reducing the error by a factor of 4.6. For the experimental study of the models and the equalization method, we use a specific dataset consisting of the AVIRIS hyperspectral images obtained for a single area under significantly different conditions for illumination.</description><subject>Communications Engineering</subject><subject>Datasets</subject><subject>Drone aircraft</subject><subject>Engineering</subject><subject>Equalization</subject><subject>Error reduction</subject><subject>Hyperspectral imaging</subject><subject>Irradiance</subject><subject>Mathematical models</subject><subject>Mathematical Models and Computational Methods</subject><subject>Networks</subject><subject>Numerical methods</subject><subject>Parameters</subject><subject>Remote sensing</subject><subject>Satellite imagery</subject><subject>Satellites</subject><subject>Sensors</subject><subject>Shooting</subject><subject>Unmanned aerial vehicles</subject><issn>1064-2269</issn><issn>1555-6557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNp1kcFq3DAQQE1ooWnaD-hNkFOhTiRZluzjdkmbQNKWbrdXI8sjr4JjbTQyJP36yjiQLKUIJDHz3ojRZNkHRs8YK8T5hlEpOJc150xQKuVRdszKssxlWapX6Z7S-Zx_k71FvKW0qCUtjrPx4n7Sg_ujo_Mj8ZZsdt5HN_Zk7cfOzVEknzVCR1J-swcTgx7Ije9gQGJ9IHEH5BtAh7P9I4BxOJda9cGZaYhTALLFueB29RvfZa-tHhDeP50n2fbLxa_1ZX79_evVenWdG8FlzG1bWFMCZaatecWVZK2QWghbtdwwBcwYpgsFioJsVUsrIbmoVMfrUioFojjJTpe6--DvJ8DY3PopjOnJhquq5pJLwRJ1tlC9HqBxo_WpOZNWB3fO-BGsS_GVErykklOVhI8HQmIiPMReT4jN1ebnIfvpBdtO6Q8A04au30VclAOcLbgJHjGAbfbB3enw2DDazCNu_hlxcvjiYGLHHsJzl_-X_gL2BaYC</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Pavlova, M. A.</creator><creator>Sidorchuk, D. S.</creator><creator>Kushchev, D. O.</creator><creator>Bocharov, D. A.</creator><creator>Nikolaev, D. P.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20221201</creationdate><title>Equalization of Shooting Conditions Based on Spectral Models for the Needs of Precision Agriculture Using UAVs</title><author>Pavlova, M. A. ; Sidorchuk, D. S. ; Kushchev, D. O. ; Bocharov, D. A. ; Nikolaev, D. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-fb3fc5e01cb9282761b46a44f8b2c17e1cc1a37e70e6b7b08462487d295677e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Communications Engineering</topic><topic>Datasets</topic><topic>Drone aircraft</topic><topic>Engineering</topic><topic>Equalization</topic><topic>Error reduction</topic><topic>Hyperspectral imaging</topic><topic>Irradiance</topic><topic>Mathematical models</topic><topic>Mathematical Models and Computational Methods</topic><topic>Networks</topic><topic>Numerical methods</topic><topic>Parameters</topic><topic>Remote sensing</topic><topic>Satellite imagery</topic><topic>Satellites</topic><topic>Sensors</topic><topic>Shooting</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pavlova, M. A.</creatorcontrib><creatorcontrib>Sidorchuk, D. S.</creatorcontrib><creatorcontrib>Kushchev, D. O.</creatorcontrib><creatorcontrib>Bocharov, D. A.</creatorcontrib><creatorcontrib>Nikolaev, D. P.</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of communications technology & electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pavlova, M. A.</au><au>Sidorchuk, D. S.</au><au>Kushchev, D. O.</au><au>Bocharov, D. A.</au><au>Nikolaev, D. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equalization of Shooting Conditions Based on Spectral Models for the Needs of Precision Agriculture Using UAVs</atitle><jtitle>Journal of communications technology & electronics</jtitle><stitle>J. Commun. Technol. Electron</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>67</volume><issue>Suppl 2</issue><spage>S283</spage><epage>S289</epage><pages>S283-S289</pages><issn>1064-2269</issn><eissn>1555-6557</eissn><abstract>Unmanned aerial vehicles (UAVs) are widely used as data sources for monitoring of farm lands. As distinct from satellite imagery, in which satellites often have a sun-synchronous trajectory, UAV data can be characterized by significant variability of shooting conditions, which complicates data analytics. We consider the problem of equalization of the shooting conditions for a hyperspectral image using specific spatial image zones (clues), for which the values obtained under the target conditions are known. It is shown that the affine model of the irradiance incoming to a sensor on the test dataset is more accurate than the linear one. For analytical calculation of the parameters of the affine model, the presence of instability in the spectral regions, in which the images of clue regions have close values, is shown. A regularized numerical method that is free of such a disadvantage is proposed for estimation of the parameters of the affine model. The affine model is used to propose a new equalization method that makes it possible to bring images obtained under original conditions closer to images obtained under target conditions, reducing the error by a factor of 4.6. For the experimental study of the models and the equalization method, we use a specific dataset consisting of the AVIRIS hyperspectral images obtained for a single area under significantly different conditions for illumination.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1064226922140066</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-2269 |
ispartof | Journal of communications technology & electronics, 2022-12, Vol.67 (Suppl 2), p.S283-S289 |
issn | 1064-2269 1555-6557 |
language | eng |
recordid | cdi_proquest_journals_2789262641 |
source | SpringerLink Journals - AutoHoldings |
subjects | Communications Engineering Datasets Drone aircraft Engineering Equalization Error reduction Hyperspectral imaging Irradiance Mathematical models Mathematical Models and Computational Methods Networks Numerical methods Parameters Remote sensing Satellite imagery Satellites Sensors Shooting Unmanned aerial vehicles |
title | Equalization of Shooting Conditions Based on Spectral Models for the Needs of Precision Agriculture Using UAVs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A30%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equalization%20of%20Shooting%20Conditions%20Based%20on%20Spectral%20Models%20for%20the%20Needs%20of%20Precision%20Agriculture%20Using%20UAVs&rft.jtitle=Journal%20of%20communications%20technology%20&%20electronics&rft.au=Pavlova,%20M.%20A.&rft.date=2022-12-01&rft.volume=67&rft.issue=Suppl%202&rft.spage=S283&rft.epage=S289&rft.pages=S283-S289&rft.issn=1064-2269&rft.eissn=1555-6557&rft_id=info:doi/10.1134/S1064226922140066&rft_dat=%3Cgale_proqu%3EA742506207%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2789262641&rft_id=info:pmid/&rft_galeid=A742506207&rfr_iscdi=true |