FROM SEPARABLE POLYNOMIALS TO NONEXISTENCE OF RATIONAL POINTS ON CERTAIN HYPERELLIPTIC CURVES

We give a separability criterion for the polynomials of the form $$\begin{equation*} ax^{2n + 2} + (bx^{2m} + c)(d x^{2k} + e). \end{equation*}$$ Using this separability criterion, we prove a sufficient condition using the Brauer–Manin obstruction under which curves of the form $$\begin{equation*} z...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Australian Mathematical Society (2001) 2014-06, Vol.96 (3), p.354-385
1. Verfasser: DONG QUAN, NGUYEN NGOC
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 385
container_issue 3
container_start_page 354
container_title Journal of the Australian Mathematical Society (2001)
container_volume 96
creator DONG QUAN, NGUYEN NGOC
description We give a separability criterion for the polynomials of the form $$\begin{equation*} ax^{2n + 2} + (bx^{2m} + c)(d x^{2k} + e). \end{equation*}$$ Using this separability criterion, we prove a sufficient condition using the Brauer–Manin obstruction under which curves of the form $$\begin{equation*} z^2 = ax^{2n + 2} + (bx^{2m} + c)(d x^{2k} + e) \end{equation*}$$ have no rational points. As an illustration, using the sufficient condition, we study the arithmetic of hyperelliptic curves of the above form and show that there are infinitely many curves of the above form that are counterexamples to the Hasse principle explained by the Brauer–Manin obstruction.
doi_str_mv 10.1017/S1446788714000044
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2789202379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1446788714000044</cupid><sourcerecordid>2789202379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-9d287183fb7668a993d4b078e39679b961612cd2f3507c4a231415279d86fc0e3</originalsourceid><addsrcrecordid>eNp1UEtLw0AQXkTBWv0B3hY8R_fVfRxj2NqF7W5IUrEHCXlKi7WatAf_vSkteBDnMsPM9xg-AG4xuscIi4cUM8aFlAIzNBRjZ2B0WAUSI3F-mg_3S3DV92uECGYcjcDrNPFzmOo4TMJHq2Hs7dL5uQltCjMPnXf6xaSZdpGGfgqTMDPehXbAGZel0DsY6SQLjYOzZawTba2JMxPBaJE86_QaXLTFe9_cnPoYLKY6i2aB9U8mCm1QUY52garJ8LikbSk4l4VStGYlErKhigtVKo45JlVNWjpBomIFoZjhCRGqlrytUEPH4O6o-9ltv_ZNv8vX2333MVjmREhFEKFCDSh8RFXdtu-7ps0_u9Wm6L5zjPJDivmfFAcOPXGKTdmt6rfmV_p_1g_xZ2oH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789202379</pqid></control><display><type>article</type><title>FROM SEPARABLE POLYNOMIALS TO NONEXISTENCE OF RATIONAL POINTS ON CERTAIN HYPERELLIPTIC CURVES</title><source>Cambridge University Press Journals Complete</source><creator>DONG QUAN, NGUYEN NGOC</creator><creatorcontrib>DONG QUAN, NGUYEN NGOC</creatorcontrib><description>We give a separability criterion for the polynomials of the form $$\begin{equation*} ax^{2n + 2} + (bx^{2m} + c)(d x^{2k} + e). \end{equation*}$$ Using this separability criterion, we prove a sufficient condition using the Brauer–Manin obstruction under which curves of the form $$\begin{equation*} z^2 = ax^{2n + 2} + (bx^{2m} + c)(d x^{2k} + e) \end{equation*}$$ have no rational points. As an illustration, using the sufficient condition, we study the arithmetic of hyperelliptic curves of the above form and show that there are infinitely many curves of the above form that are counterexamples to the Hasse principle explained by the Brauer–Manin obstruction.</description><identifier>ISSN: 1446-7887</identifier><identifier>EISSN: 1446-8107</identifier><identifier>DOI: 10.1017/S1446788714000044</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Polynomials</subject><ispartof>Journal of the Australian Mathematical Society (2001), 2014-06, Vol.96 (3), p.354-385</ispartof><rights>Copyright © 2014 Australian Mathematical Publishing Association Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-9d287183fb7668a993d4b078e39679b961612cd2f3507c4a231415279d86fc0e3</citedby><cites>FETCH-LOGICAL-c360t-9d287183fb7668a993d4b078e39679b961612cd2f3507c4a231415279d86fc0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1446788714000044/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55606</link.rule.ids></links><search><creatorcontrib>DONG QUAN, NGUYEN NGOC</creatorcontrib><title>FROM SEPARABLE POLYNOMIALS TO NONEXISTENCE OF RATIONAL POINTS ON CERTAIN HYPERELLIPTIC CURVES</title><title>Journal of the Australian Mathematical Society (2001)</title><addtitle>J. Aust. Math. Soc</addtitle><description>We give a separability criterion for the polynomials of the form $$\begin{equation*} ax^{2n + 2} + (bx^{2m} + c)(d x^{2k} + e). \end{equation*}$$ Using this separability criterion, we prove a sufficient condition using the Brauer–Manin obstruction under which curves of the form $$\begin{equation*} z^2 = ax^{2n + 2} + (bx^{2m} + c)(d x^{2k} + e) \end{equation*}$$ have no rational points. As an illustration, using the sufficient condition, we study the arithmetic of hyperelliptic curves of the above form and show that there are infinitely many curves of the above form that are counterexamples to the Hasse principle explained by the Brauer–Manin obstruction.</description><subject>Polynomials</subject><issn>1446-7887</issn><issn>1446-8107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UEtLw0AQXkTBWv0B3hY8R_fVfRxj2NqF7W5IUrEHCXlKi7WatAf_vSkteBDnMsPM9xg-AG4xuscIi4cUM8aFlAIzNBRjZ2B0WAUSI3F-mg_3S3DV92uECGYcjcDrNPFzmOo4TMJHq2Hs7dL5uQltCjMPnXf6xaSZdpGGfgqTMDPehXbAGZel0DsY6SQLjYOzZawTba2JMxPBaJE86_QaXLTFe9_cnPoYLKY6i2aB9U8mCm1QUY52garJ8LikbSk4l4VStGYlErKhigtVKo45JlVNWjpBomIFoZjhCRGqlrytUEPH4O6o-9ltv_ZNv8vX2333MVjmREhFEKFCDSh8RFXdtu-7ps0_u9Wm6L5zjPJDivmfFAcOPXGKTdmt6rfmV_p_1g_xZ2oH</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>DONG QUAN, NGUYEN NGOC</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20140601</creationdate><title>FROM SEPARABLE POLYNOMIALS TO NONEXISTENCE OF RATIONAL POINTS ON CERTAIN HYPERELLIPTIC CURVES</title><author>DONG QUAN, NGUYEN NGOC</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-9d287183fb7668a993d4b078e39679b961612cd2f3507c4a231415279d86fc0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DONG QUAN, NGUYEN NGOC</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of the Australian Mathematical Society (2001)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DONG QUAN, NGUYEN NGOC</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FROM SEPARABLE POLYNOMIALS TO NONEXISTENCE OF RATIONAL POINTS ON CERTAIN HYPERELLIPTIC CURVES</atitle><jtitle>Journal of the Australian Mathematical Society (2001)</jtitle><addtitle>J. Aust. Math. Soc</addtitle><date>2014-06-01</date><risdate>2014</risdate><volume>96</volume><issue>3</issue><spage>354</spage><epage>385</epage><pages>354-385</pages><issn>1446-7887</issn><eissn>1446-8107</eissn><abstract>We give a separability criterion for the polynomials of the form $$\begin{equation*} ax^{2n + 2} + (bx^{2m} + c)(d x^{2k} + e). \end{equation*}$$ Using this separability criterion, we prove a sufficient condition using the Brauer–Manin obstruction under which curves of the form $$\begin{equation*} z^2 = ax^{2n + 2} + (bx^{2m} + c)(d x^{2k} + e) \end{equation*}$$ have no rational points. As an illustration, using the sufficient condition, we study the arithmetic of hyperelliptic curves of the above form and show that there are infinitely many curves of the above form that are counterexamples to the Hasse principle explained by the Brauer–Manin obstruction.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S1446788714000044</doi><tpages>32</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1446-7887
ispartof Journal of the Australian Mathematical Society (2001), 2014-06, Vol.96 (3), p.354-385
issn 1446-7887
1446-8107
language eng
recordid cdi_proquest_journals_2789202379
source Cambridge University Press Journals Complete
subjects Polynomials
title FROM SEPARABLE POLYNOMIALS TO NONEXISTENCE OF RATIONAL POINTS ON CERTAIN HYPERELLIPTIC CURVES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A29%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FROM%20SEPARABLE%20POLYNOMIALS%20TO%20NONEXISTENCE%20OF%20RATIONAL%20POINTS%20ON%20CERTAIN%20HYPERELLIPTIC%20CURVES&rft.jtitle=Journal%20of%20the%20Australian%20Mathematical%20Society%20(2001)&rft.au=DONG%20QUAN,%20NGUYEN%20NGOC&rft.date=2014-06-01&rft.volume=96&rft.issue=3&rft.spage=354&rft.epage=385&rft.pages=354-385&rft.issn=1446-7887&rft.eissn=1446-8107&rft_id=info:doi/10.1017/S1446788714000044&rft_dat=%3Cproquest_cross%3E2789202379%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2789202379&rft_id=info:pmid/&rft_cupid=10_1017_S1446788714000044&rfr_iscdi=true