FROM SEPARABLE POLYNOMIALS TO NONEXISTENCE OF RATIONAL POINTS ON CERTAIN HYPERELLIPTIC CURVES
We give a separability criterion for the polynomials of the form $$\begin{equation*} ax^{2n + 2} + (bx^{2m} + c)(d x^{2k} + e). \end{equation*}$$ Using this separability criterion, we prove a sufficient condition using the Brauer–Manin obstruction under which curves of the form $$\begin{equation*} z...
Gespeichert in:
Veröffentlicht in: | Journal of the Australian Mathematical Society (2001) 2014-06, Vol.96 (3), p.354-385 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 385 |
---|---|
container_issue | 3 |
container_start_page | 354 |
container_title | Journal of the Australian Mathematical Society (2001) |
container_volume | 96 |
creator | DONG QUAN, NGUYEN NGOC |
description | We give a separability criterion for the polynomials of the form $$\begin{equation*} ax^{2n + 2} + (bx^{2m} + c)(d x^{2k} + e). \end{equation*}$$ Using this separability criterion, we prove a sufficient condition using the Brauer–Manin obstruction under which curves of the form $$\begin{equation*} z^2 = ax^{2n + 2} + (bx^{2m} + c)(d x^{2k} + e) \end{equation*}$$ have no rational points. As an illustration, using the sufficient condition, we study the arithmetic of hyperelliptic curves of the above form and show that there are infinitely many curves of the above form that are counterexamples to the Hasse principle explained by the Brauer–Manin obstruction. |
doi_str_mv | 10.1017/S1446788714000044 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2789202379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1446788714000044</cupid><sourcerecordid>2789202379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-9d287183fb7668a993d4b078e39679b961612cd2f3507c4a231415279d86fc0e3</originalsourceid><addsrcrecordid>eNp1UEtLw0AQXkTBWv0B3hY8R_fVfRxj2NqF7W5IUrEHCXlKi7WatAf_vSkteBDnMsPM9xg-AG4xuscIi4cUM8aFlAIzNBRjZ2B0WAUSI3F-mg_3S3DV92uECGYcjcDrNPFzmOo4TMJHq2Hs7dL5uQltCjMPnXf6xaSZdpGGfgqTMDPehXbAGZel0DsY6SQLjYOzZawTba2JMxPBaJE86_QaXLTFe9_cnPoYLKY6i2aB9U8mCm1QUY52garJ8LikbSk4l4VStGYlErKhigtVKo45JlVNWjpBomIFoZjhCRGqlrytUEPH4O6o-9ltv_ZNv8vX2333MVjmREhFEKFCDSh8RFXdtu-7ps0_u9Wm6L5zjPJDivmfFAcOPXGKTdmt6rfmV_p_1g_xZ2oH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789202379</pqid></control><display><type>article</type><title>FROM SEPARABLE POLYNOMIALS TO NONEXISTENCE OF RATIONAL POINTS ON CERTAIN HYPERELLIPTIC CURVES</title><source>Cambridge University Press Journals Complete</source><creator>DONG QUAN, NGUYEN NGOC</creator><creatorcontrib>DONG QUAN, NGUYEN NGOC</creatorcontrib><description>We give a separability criterion for the polynomials of the form $$\begin{equation*} ax^{2n + 2} + (bx^{2m} + c)(d x^{2k} + e). \end{equation*}$$ Using this separability criterion, we prove a sufficient condition using the Brauer–Manin obstruction under which curves of the form $$\begin{equation*} z^2 = ax^{2n + 2} + (bx^{2m} + c)(d x^{2k} + e) \end{equation*}$$ have no rational points. As an illustration, using the sufficient condition, we study the arithmetic of hyperelliptic curves of the above form and show that there are infinitely many curves of the above form that are counterexamples to the Hasse principle explained by the Brauer–Manin obstruction.</description><identifier>ISSN: 1446-7887</identifier><identifier>EISSN: 1446-8107</identifier><identifier>DOI: 10.1017/S1446788714000044</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Polynomials</subject><ispartof>Journal of the Australian Mathematical Society (2001), 2014-06, Vol.96 (3), p.354-385</ispartof><rights>Copyright © 2014 Australian Mathematical Publishing Association Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-9d287183fb7668a993d4b078e39679b961612cd2f3507c4a231415279d86fc0e3</citedby><cites>FETCH-LOGICAL-c360t-9d287183fb7668a993d4b078e39679b961612cd2f3507c4a231415279d86fc0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1446788714000044/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55606</link.rule.ids></links><search><creatorcontrib>DONG QUAN, NGUYEN NGOC</creatorcontrib><title>FROM SEPARABLE POLYNOMIALS TO NONEXISTENCE OF RATIONAL POINTS ON CERTAIN HYPERELLIPTIC CURVES</title><title>Journal of the Australian Mathematical Society (2001)</title><addtitle>J. Aust. Math. Soc</addtitle><description>We give a separability criterion for the polynomials of the form $$\begin{equation*} ax^{2n + 2} + (bx^{2m} + c)(d x^{2k} + e). \end{equation*}$$ Using this separability criterion, we prove a sufficient condition using the Brauer–Manin obstruction under which curves of the form $$\begin{equation*} z^2 = ax^{2n + 2} + (bx^{2m} + c)(d x^{2k} + e) \end{equation*}$$ have no rational points. As an illustration, using the sufficient condition, we study the arithmetic of hyperelliptic curves of the above form and show that there are infinitely many curves of the above form that are counterexamples to the Hasse principle explained by the Brauer–Manin obstruction.</description><subject>Polynomials</subject><issn>1446-7887</issn><issn>1446-8107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UEtLw0AQXkTBWv0B3hY8R_fVfRxj2NqF7W5IUrEHCXlKi7WatAf_vSkteBDnMsPM9xg-AG4xuscIi4cUM8aFlAIzNBRjZ2B0WAUSI3F-mg_3S3DV92uECGYcjcDrNPFzmOo4TMJHq2Hs7dL5uQltCjMPnXf6xaSZdpGGfgqTMDPehXbAGZel0DsY6SQLjYOzZawTba2JMxPBaJE86_QaXLTFe9_cnPoYLKY6i2aB9U8mCm1QUY52garJ8LikbSk4l4VStGYlErKhigtVKo45JlVNWjpBomIFoZjhCRGqlrytUEPH4O6o-9ltv_ZNv8vX2333MVjmREhFEKFCDSh8RFXdtu-7ps0_u9Wm6L5zjPJDivmfFAcOPXGKTdmt6rfmV_p_1g_xZ2oH</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>DONG QUAN, NGUYEN NGOC</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20140601</creationdate><title>FROM SEPARABLE POLYNOMIALS TO NONEXISTENCE OF RATIONAL POINTS ON CERTAIN HYPERELLIPTIC CURVES</title><author>DONG QUAN, NGUYEN NGOC</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-9d287183fb7668a993d4b078e39679b961612cd2f3507c4a231415279d86fc0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DONG QUAN, NGUYEN NGOC</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of the Australian Mathematical Society (2001)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DONG QUAN, NGUYEN NGOC</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FROM SEPARABLE POLYNOMIALS TO NONEXISTENCE OF RATIONAL POINTS ON CERTAIN HYPERELLIPTIC CURVES</atitle><jtitle>Journal of the Australian Mathematical Society (2001)</jtitle><addtitle>J. Aust. Math. Soc</addtitle><date>2014-06-01</date><risdate>2014</risdate><volume>96</volume><issue>3</issue><spage>354</spage><epage>385</epage><pages>354-385</pages><issn>1446-7887</issn><eissn>1446-8107</eissn><abstract>We give a separability criterion for the polynomials of the form $$\begin{equation*} ax^{2n + 2} + (bx^{2m} + c)(d x^{2k} + e). \end{equation*}$$ Using this separability criterion, we prove a sufficient condition using the Brauer–Manin obstruction under which curves of the form $$\begin{equation*} z^2 = ax^{2n + 2} + (bx^{2m} + c)(d x^{2k} + e) \end{equation*}$$ have no rational points. As an illustration, using the sufficient condition, we study the arithmetic of hyperelliptic curves of the above form and show that there are infinitely many curves of the above form that are counterexamples to the Hasse principle explained by the Brauer–Manin obstruction.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S1446788714000044</doi><tpages>32</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1446-7887 |
ispartof | Journal of the Australian Mathematical Society (2001), 2014-06, Vol.96 (3), p.354-385 |
issn | 1446-7887 1446-8107 |
language | eng |
recordid | cdi_proquest_journals_2789202379 |
source | Cambridge University Press Journals Complete |
subjects | Polynomials |
title | FROM SEPARABLE POLYNOMIALS TO NONEXISTENCE OF RATIONAL POINTS ON CERTAIN HYPERELLIPTIC CURVES |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A29%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FROM%20SEPARABLE%20POLYNOMIALS%20TO%20NONEXISTENCE%20OF%20RATIONAL%20POINTS%20ON%20CERTAIN%20HYPERELLIPTIC%20CURVES&rft.jtitle=Journal%20of%20the%20Australian%20Mathematical%20Society%20(2001)&rft.au=DONG%20QUAN,%20NGUYEN%20NGOC&rft.date=2014-06-01&rft.volume=96&rft.issue=3&rft.spage=354&rft.epage=385&rft.pages=354-385&rft.issn=1446-7887&rft.eissn=1446-8107&rft_id=info:doi/10.1017/S1446788714000044&rft_dat=%3Cproquest_cross%3E2789202379%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2789202379&rft_id=info:pmid/&rft_cupid=10_1017_S1446788714000044&rfr_iscdi=true |