MINIMAL VOLUME OF COMPLETE UNIFORM VISIBILITY MANIFOLDS WITH FINITE VOLUME
We show that complete uniform visibility manifolds of finite volume with sectional curvature $- 1\leq K\leq 0$ have positive simplicial volume. This implies that their minimal volume is nonzero.
Gespeichert in:
Veröffentlicht in: | Journal of the Australian Mathematical Society (2001) 2013-06, Vol.94 (3), p.375-384 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 384 |
---|---|
container_issue | 3 |
container_start_page | 375 |
container_title | Journal of the Australian Mathematical Society (2001) |
container_volume | 94 |
creator | KIM, SUNGWOON |
description | We show that complete uniform visibility manifolds of finite volume with sectional curvature $- 1\leq K\leq 0$ have positive simplicial volume. This implies that their minimal volume is nonzero. |
doi_str_mv | 10.1017/S1446788713000141 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2789184379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1446788713000141</cupid><sourcerecordid>2789184379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-c8625377aac63b9582131eae29ddf1f9b30fa3b3ff8becf677de2ba68deabc1b3</originalsourceid><addsrcrecordid>eNp1kMFOwzAQRC0EEqXwAdwscQ547TR2jqUk1MhpEE2LOEV2YqNWlBanPfD3JGokDojTrmbnzUqD0DWQWyDA7-YQhhEXggMjhEAIJ2jQSYEAwk_7vbufo4umWRNCIYzIAD1lciazscLLXC2yBOcpnuTZs0qKBC9mMs1fMryUc3kvlSzecDbuNPUwx6-ymOK0hVvjkb1EZ05_NPaqn0O0SJNiMg1U_ignYxVUDOg-qERER4xzrauImXgkKDCw2tK4rh242DDiNDPMOWFs5SLOa0uNjkRttanAsCG6Oebu_PbrYJt9ud4e_Gf7sqRcxCBCxuPWBUdX5bdN460rd3610f67BFJ2lZV_KmsZ1jN6Y_yqfre_0f9TP8_xZ08</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789184379</pqid></control><display><type>article</type><title>MINIMAL VOLUME OF COMPLETE UNIFORM VISIBILITY MANIFOLDS WITH FINITE VOLUME</title><source>Cambridge University Press Journals Complete</source><creator>KIM, SUNGWOON</creator><creatorcontrib>KIM, SUNGWOON</creatorcontrib><description>We show that complete uniform visibility manifolds of finite volume with sectional curvature $- 1\leq K\leq 0$ have positive simplicial volume. This implies that their minimal volume is nonzero.</description><identifier>ISSN: 1446-7887</identifier><identifier>EISSN: 1446-8107</identifier><identifier>DOI: 10.1017/S1446788713000141</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Manifolds ; Visibility</subject><ispartof>Journal of the Australian Mathematical Society (2001), 2013-06, Vol.94 (3), p.375-384</ispartof><rights>Copyright ©2013 Australian Mathematical Publishing Association Inc.</rights><rights>Copyright ©2013 Australian Mathematical Publishing Association Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c312t-c8625377aac63b9582131eae29ddf1f9b30fa3b3ff8becf677de2ba68deabc1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1446788713000141/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>KIM, SUNGWOON</creatorcontrib><title>MINIMAL VOLUME OF COMPLETE UNIFORM VISIBILITY MANIFOLDS WITH FINITE VOLUME</title><title>Journal of the Australian Mathematical Society (2001)</title><addtitle>J. Aust. Math. Soc</addtitle><description>We show that complete uniform visibility manifolds of finite volume with sectional curvature $- 1\leq K\leq 0$ have positive simplicial volume. This implies that their minimal volume is nonzero.</description><subject>Manifolds</subject><subject>Visibility</subject><issn>1446-7887</issn><issn>1446-8107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMFOwzAQRC0EEqXwAdwscQ547TR2jqUk1MhpEE2LOEV2YqNWlBanPfD3JGokDojTrmbnzUqD0DWQWyDA7-YQhhEXggMjhEAIJ2jQSYEAwk_7vbufo4umWRNCIYzIAD1lciazscLLXC2yBOcpnuTZs0qKBC9mMs1fMryUc3kvlSzecDbuNPUwx6-ymOK0hVvjkb1EZ05_NPaqn0O0SJNiMg1U_ignYxVUDOg-qERER4xzrauImXgkKDCw2tK4rh242DDiNDPMOWFs5SLOa0uNjkRttanAsCG6Oebu_PbrYJt9ud4e_Gf7sqRcxCBCxuPWBUdX5bdN460rd3610f67BFJ2lZV_KmsZ1jN6Y_yqfre_0f9TP8_xZ08</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>KIM, SUNGWOON</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>201306</creationdate><title>MINIMAL VOLUME OF COMPLETE UNIFORM VISIBILITY MANIFOLDS WITH FINITE VOLUME</title><author>KIM, SUNGWOON</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-c8625377aac63b9582131eae29ddf1f9b30fa3b3ff8becf677de2ba68deabc1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Manifolds</topic><topic>Visibility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KIM, SUNGWOON</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of the Australian Mathematical Society (2001)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KIM, SUNGWOON</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MINIMAL VOLUME OF COMPLETE UNIFORM VISIBILITY MANIFOLDS WITH FINITE VOLUME</atitle><jtitle>Journal of the Australian Mathematical Society (2001)</jtitle><addtitle>J. Aust. Math. Soc</addtitle><date>2013-06</date><risdate>2013</risdate><volume>94</volume><issue>3</issue><spage>375</spage><epage>384</epage><pages>375-384</pages><issn>1446-7887</issn><eissn>1446-8107</eissn><abstract>We show that complete uniform visibility manifolds of finite volume with sectional curvature $- 1\leq K\leq 0$ have positive simplicial volume. This implies that their minimal volume is nonzero.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S1446788713000141</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1446-7887 |
ispartof | Journal of the Australian Mathematical Society (2001), 2013-06, Vol.94 (3), p.375-384 |
issn | 1446-7887 1446-8107 |
language | eng |
recordid | cdi_proquest_journals_2789184379 |
source | Cambridge University Press Journals Complete |
subjects | Manifolds Visibility |
title | MINIMAL VOLUME OF COMPLETE UNIFORM VISIBILITY MANIFOLDS WITH FINITE VOLUME |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A40%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MINIMAL%20VOLUME%20OF%20COMPLETE%20UNIFORM%20VISIBILITY%20MANIFOLDS%20WITH%20FINITE%20VOLUME&rft.jtitle=Journal%20of%20the%20Australian%20Mathematical%20Society%20(2001)&rft.au=KIM,%20SUNGWOON&rft.date=2013-06&rft.volume=94&rft.issue=3&rft.spage=375&rft.epage=384&rft.pages=375-384&rft.issn=1446-7887&rft.eissn=1446-8107&rft_id=info:doi/10.1017/S1446788713000141&rft_dat=%3Cproquest_cross%3E2789184379%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2789184379&rft_id=info:pmid/&rft_cupid=10_1017_S1446788713000141&rfr_iscdi=true |