Exact Discrete Solutions of Boundary Control Problems for the 1D Heat Equation
Method-of-lines discretizations are demanding test problems for stiff integration methods. However, for PDE problems with known analytic solution, the presence of space discretization errors or the need to use codes to compute reference solutions may limit the validity of numerical test results. To...
Gespeichert in:
Veröffentlicht in: | Journal of optimization theory and applications 2023-03, Vol.196 (3), p.1106-1118 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1118 |
---|---|
container_issue | 3 |
container_start_page | 1106 |
container_title | Journal of optimization theory and applications |
container_volume | 196 |
creator | Lang, Jens Schmitt, Bernhard A. |
description | Method-of-lines discretizations are demanding test problems for stiff integration methods. However, for PDE problems with known analytic solution, the presence of space discretization errors or the need to use codes to compute reference solutions may limit the validity of numerical test results. To overcome these drawbacks, we present in this short note a simple test problem with boundary control, a situation where one-step methods may suffer from order reduction. We derive exact formulas for the solution of an optimal boundary control problem governed by a one-dimensional discrete heat equation and an objective function that measures the distance of the final state from the target and the control costs. This analytical setting is used to compare the numerically observed convergence orders for selected implicit Runge–Kutta and Peer two-step methods of classical order four, which are suitable for optimal control problems. |
doi_str_mv | 10.1007/s10957-022-02154-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2789030719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2789030719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-53a824fb00bc31866ab9abc2b1410078ce5cd4f55dc90d6f4d2cabe04464cf4d3</originalsourceid><addsrcrecordid>eNp9UEtLAzEQDqJgrf4BTwHPq5PXPo7ahxWKCuo5JNmstmw3bZIF_fdmXcGbh2GYme_BfAhdErgmAMVNIFCJIgNKUxHBM36EJkQULKNlUR6jCQwnRll1is5C2AJAVRZ8gh4Xn8pEPN8E4220-MW1fdy4LmDX4DvXd7XyX3jmuuhdi5-9063dBdw4j-OHxWSOV1ZFvDj0aqCdo5NGtcFe_PYpelsuXmerbP10_zC7XWeGER4zwVRJeaMBdFqUea50pbShmvDhndJYYWreCFGbCuq84TU1SlvgPOcmTWyKrkbdvXeH3oYot673XbKUtCgrYFCQKqHoiDLeheBtI_d-s0sPSQJyMJJjbjKFI39ykzyR2EgKCdy9W_8n_Q_rG3Web-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789030719</pqid></control><display><type>article</type><title>Exact Discrete Solutions of Boundary Control Problems for the 1D Heat Equation</title><source>SpringerNature Journals</source><creator>Lang, Jens ; Schmitt, Bernhard A.</creator><creatorcontrib>Lang, Jens ; Schmitt, Bernhard A.</creatorcontrib><description>Method-of-lines discretizations are demanding test problems for stiff integration methods. However, for PDE problems with known analytic solution, the presence of space discretization errors or the need to use codes to compute reference solutions may limit the validity of numerical test results. To overcome these drawbacks, we present in this short note a simple test problem with boundary control, a situation where one-step methods may suffer from order reduction. We derive exact formulas for the solution of an optimal boundary control problem governed by a one-dimensional discrete heat equation and an objective function that measures the distance of the final state from the target and the control costs. This analytical setting is used to compare the numerically observed convergence orders for selected implicit Runge–Kutta and Peer two-step methods of classical order four, which are suitable for optimal control problems.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1007/s10957-022-02154-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Boundary conditions ; Boundary control ; Calculus of Variations and Optimal Control; Optimization ; Cost analysis ; Eigenvalues ; Eigenvectors ; Engineering ; Exact solutions ; Mathematics ; Mathematics and Statistics ; Method of lines ; Operations Research/Decision Theory ; Optimal control ; Optimization ; Partial differential equations ; Runge-Kutta method ; Theory of Computation ; Thermodynamics</subject><ispartof>Journal of optimization theory and applications, 2023-03, Vol.196 (3), p.1106-1118</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-53a824fb00bc31866ab9abc2b1410078ce5cd4f55dc90d6f4d2cabe04464cf4d3</cites><orcidid>0000-0001-5797-8024 ; 0000-0003-4603-6554</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10957-022-02154-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10957-022-02154-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,27933,27934,41497,42566,51328</link.rule.ids></links><search><creatorcontrib>Lang, Jens</creatorcontrib><creatorcontrib>Schmitt, Bernhard A.</creatorcontrib><title>Exact Discrete Solutions of Boundary Control Problems for the 1D Heat Equation</title><title>Journal of optimization theory and applications</title><addtitle>J Optim Theory Appl</addtitle><description>Method-of-lines discretizations are demanding test problems for stiff integration methods. However, for PDE problems with known analytic solution, the presence of space discretization errors or the need to use codes to compute reference solutions may limit the validity of numerical test results. To overcome these drawbacks, we present in this short note a simple test problem with boundary control, a situation where one-step methods may suffer from order reduction. We derive exact formulas for the solution of an optimal boundary control problem governed by a one-dimensional discrete heat equation and an objective function that measures the distance of the final state from the target and the control costs. This analytical setting is used to compare the numerically observed convergence orders for selected implicit Runge–Kutta and Peer two-step methods of classical order four, which are suitable for optimal control problems.</description><subject>Applications of Mathematics</subject><subject>Boundary conditions</subject><subject>Boundary control</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Cost analysis</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Engineering</subject><subject>Exact solutions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Method of lines</subject><subject>Operations Research/Decision Theory</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Partial differential equations</subject><subject>Runge-Kutta method</subject><subject>Theory of Computation</subject><subject>Thermodynamics</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9UEtLAzEQDqJgrf4BTwHPq5PXPo7ahxWKCuo5JNmstmw3bZIF_fdmXcGbh2GYme_BfAhdErgmAMVNIFCJIgNKUxHBM36EJkQULKNlUR6jCQwnRll1is5C2AJAVRZ8gh4Xn8pEPN8E4220-MW1fdy4LmDX4DvXd7XyX3jmuuhdi5-9063dBdw4j-OHxWSOV1ZFvDj0aqCdo5NGtcFe_PYpelsuXmerbP10_zC7XWeGER4zwVRJeaMBdFqUea50pbShmvDhndJYYWreCFGbCuq84TU1SlvgPOcmTWyKrkbdvXeH3oYot673XbKUtCgrYFCQKqHoiDLeheBtI_d-s0sPSQJyMJJjbjKFI39ykzyR2EgKCdy9W_8n_Q_rG3Web-g</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Lang, Jens</creator><creator>Schmitt, Bernhard A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-5797-8024</orcidid><orcidid>https://orcid.org/0000-0003-4603-6554</orcidid></search><sort><creationdate>20230301</creationdate><title>Exact Discrete Solutions of Boundary Control Problems for the 1D Heat Equation</title><author>Lang, Jens ; Schmitt, Bernhard A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-53a824fb00bc31866ab9abc2b1410078ce5cd4f55dc90d6f4d2cabe04464cf4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Boundary conditions</topic><topic>Boundary control</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Cost analysis</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Engineering</topic><topic>Exact solutions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Method of lines</topic><topic>Operations Research/Decision Theory</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Partial differential equations</topic><topic>Runge-Kutta method</topic><topic>Theory of Computation</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lang, Jens</creatorcontrib><creatorcontrib>Schmitt, Bernhard A.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lang, Jens</au><au>Schmitt, Bernhard A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact Discrete Solutions of Boundary Control Problems for the 1D Heat Equation</atitle><jtitle>Journal of optimization theory and applications</jtitle><stitle>J Optim Theory Appl</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>196</volume><issue>3</issue><spage>1106</spage><epage>1118</epage><pages>1106-1118</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><abstract>Method-of-lines discretizations are demanding test problems for stiff integration methods. However, for PDE problems with known analytic solution, the presence of space discretization errors or the need to use codes to compute reference solutions may limit the validity of numerical test results. To overcome these drawbacks, we present in this short note a simple test problem with boundary control, a situation where one-step methods may suffer from order reduction. We derive exact formulas for the solution of an optimal boundary control problem governed by a one-dimensional discrete heat equation and an objective function that measures the distance of the final state from the target and the control costs. This analytical setting is used to compare the numerically observed convergence orders for selected implicit Runge–Kutta and Peer two-step methods of classical order four, which are suitable for optimal control problems.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10957-022-02154-4</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5797-8024</orcidid><orcidid>https://orcid.org/0000-0003-4603-6554</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3239 |
ispartof | Journal of optimization theory and applications, 2023-03, Vol.196 (3), p.1106-1118 |
issn | 0022-3239 1573-2878 |
language | eng |
recordid | cdi_proquest_journals_2789030719 |
source | SpringerNature Journals |
subjects | Applications of Mathematics Boundary conditions Boundary control Calculus of Variations and Optimal Control Optimization Cost analysis Eigenvalues Eigenvectors Engineering Exact solutions Mathematics Mathematics and Statistics Method of lines Operations Research/Decision Theory Optimal control Optimization Partial differential equations Runge-Kutta method Theory of Computation Thermodynamics |
title | Exact Discrete Solutions of Boundary Control Problems for the 1D Heat Equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T10%3A00%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20Discrete%20Solutions%20of%20Boundary%20Control%20Problems%20for%20the%201D%20Heat%20Equation&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=Lang,%20Jens&rft.date=2023-03-01&rft.volume=196&rft.issue=3&rft.spage=1106&rft.epage=1118&rft.pages=1106-1118&rft.issn=0022-3239&rft.eissn=1573-2878&rft_id=info:doi/10.1007/s10957-022-02154-4&rft_dat=%3Cproquest_cross%3E2789030719%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2789030719&rft_id=info:pmid/&rfr_iscdi=true |