More Robust Schema-Guided Dialogue State Tracking via Tree-Based Paraphrase Ranking

The schema-guided paradigm overcomes scalability issues inherent in building task-oriented dialogue (TOD) agents with static ontologies. Instead of operating on dialogue context alone, agents have access to hierarchical schemas containing task-relevant natural language descriptions. Fine-tuned langu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-03
Hauptverfasser: Coca, A, Tseng, B H, Lin, W, Byrne, B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Coca, A
Tseng, B H
Lin, W
Byrne, B
description The schema-guided paradigm overcomes scalability issues inherent in building task-oriented dialogue (TOD) agents with static ontologies. Instead of operating on dialogue context alone, agents have access to hierarchical schemas containing task-relevant natural language descriptions. Fine-tuned language models excel at schema-guided dialogue state tracking (DST) but are sensitive to the writing style of the schemas. We explore methods for improving the robustness of DST models. We propose a framework for generating synthetic schemas which uses tree-based ranking to jointly optimise lexical diversity and semantic faithfulness. The generalisation of strong baselines is improved when augmenting their training data with prompts generated by our framework, as demonstrated by marked improvements in average joint goal accuracy (JGA) and schema sensitivity (SS) on the SGD-X benchmark.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2788898174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2788898174</sourcerecordid><originalsourceid>FETCH-proquest_journals_27888981743</originalsourceid><addsrcrecordid>eNqNyssKgkAYBeAhCJLyHQZaD-ioOW27b4JI9_Knfzpmjs2l58-gB2h1zuF8E-LxKAqZiDmfEd-YNggCvkp5kkQeyc5KI72qmzOWZmWDT2BHJyus6E5Cp2qHNLNgkeYayofsa_qWMA5EtgEzsgtoGBo9dnqF_isWZHqHzqD_yzlZHvb59sQGrV4OjS1a5XQ_XgVPhRBrEaZx9J_6AMCYP2E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2788898174</pqid></control><display><type>article</type><title>More Robust Schema-Guided Dialogue State Tracking via Tree-Based Paraphrase Ranking</title><source>Free E- Journals</source><creator>Coca, A ; Tseng, B H ; Lin, W ; Byrne, B</creator><creatorcontrib>Coca, A ; Tseng, B H ; Lin, W ; Byrne, B</creatorcontrib><description>The schema-guided paradigm overcomes scalability issues inherent in building task-oriented dialogue (TOD) agents with static ontologies. Instead of operating on dialogue context alone, agents have access to hierarchical schemas containing task-relevant natural language descriptions. Fine-tuned language models excel at schema-guided dialogue state tracking (DST) but are sensitive to the writing style of the schemas. We explore methods for improving the robustness of DST models. We propose a framework for generating synthetic schemas which uses tree-based ranking to jointly optimise lexical diversity and semantic faithfulness. The generalisation of strong baselines is improved when augmenting their training data with prompts generated by our framework, as demonstrated by marked improvements in average joint goal accuracy (JGA) and schema sensitivity (SS) on the SGD-X benchmark.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Ranking ; Tracking</subject><ispartof>arXiv.org, 2023-03</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Coca, A</creatorcontrib><creatorcontrib>Tseng, B H</creatorcontrib><creatorcontrib>Lin, W</creatorcontrib><creatorcontrib>Byrne, B</creatorcontrib><title>More Robust Schema-Guided Dialogue State Tracking via Tree-Based Paraphrase Ranking</title><title>arXiv.org</title><description>The schema-guided paradigm overcomes scalability issues inherent in building task-oriented dialogue (TOD) agents with static ontologies. Instead of operating on dialogue context alone, agents have access to hierarchical schemas containing task-relevant natural language descriptions. Fine-tuned language models excel at schema-guided dialogue state tracking (DST) but are sensitive to the writing style of the schemas. We explore methods for improving the robustness of DST models. We propose a framework for generating synthetic schemas which uses tree-based ranking to jointly optimise lexical diversity and semantic faithfulness. The generalisation of strong baselines is improved when augmenting their training data with prompts generated by our framework, as demonstrated by marked improvements in average joint goal accuracy (JGA) and schema sensitivity (SS) on the SGD-X benchmark.</description><subject>Ranking</subject><subject>Tracking</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyssKgkAYBeAhCJLyHQZaD-ioOW27b4JI9_Knfzpmjs2l58-gB2h1zuF8E-LxKAqZiDmfEd-YNggCvkp5kkQeyc5KI72qmzOWZmWDT2BHJyus6E5Cp2qHNLNgkeYayofsa_qWMA5EtgEzsgtoGBo9dnqF_isWZHqHzqD_yzlZHvb59sQGrV4OjS1a5XQ_XgVPhRBrEaZx9J_6AMCYP2E</recordid><startdate>20230317</startdate><enddate>20230317</enddate><creator>Coca, A</creator><creator>Tseng, B H</creator><creator>Lin, W</creator><creator>Byrne, B</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230317</creationdate><title>More Robust Schema-Guided Dialogue State Tracking via Tree-Based Paraphrase Ranking</title><author>Coca, A ; Tseng, B H ; Lin, W ; Byrne, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27888981743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ranking</topic><topic>Tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Coca, A</creatorcontrib><creatorcontrib>Tseng, B H</creatorcontrib><creatorcontrib>Lin, W</creatorcontrib><creatorcontrib>Byrne, B</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coca, A</au><au>Tseng, B H</au><au>Lin, W</au><au>Byrne, B</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>More Robust Schema-Guided Dialogue State Tracking via Tree-Based Paraphrase Ranking</atitle><jtitle>arXiv.org</jtitle><date>2023-03-17</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>The schema-guided paradigm overcomes scalability issues inherent in building task-oriented dialogue (TOD) agents with static ontologies. Instead of operating on dialogue context alone, agents have access to hierarchical schemas containing task-relevant natural language descriptions. Fine-tuned language models excel at schema-guided dialogue state tracking (DST) but are sensitive to the writing style of the schemas. We explore methods for improving the robustness of DST models. We propose a framework for generating synthetic schemas which uses tree-based ranking to jointly optimise lexical diversity and semantic faithfulness. The generalisation of strong baselines is improved when augmenting their training data with prompts generated by our framework, as demonstrated by marked improvements in average joint goal accuracy (JGA) and schema sensitivity (SS) on the SGD-X benchmark.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2788898174
source Free E- Journals
subjects Ranking
Tracking
title More Robust Schema-Guided Dialogue State Tracking via Tree-Based Paraphrase Ranking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A43%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=More%20Robust%20Schema-Guided%20Dialogue%20State%20Tracking%20via%20Tree-Based%20Paraphrase%20Ranking&rft.jtitle=arXiv.org&rft.au=Coca,%20A&rft.date=2023-03-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2788898174%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2788898174&rft_id=info:pmid/&rfr_iscdi=true