Conflict Optimization for Binary CSP Applied to Minimum Partition into Plane Subgraphs and Graph Coloring
CG:SHOP is an annual geometric optimization challenge and the 2022 edition proposed the problem of coloring a certain geometric graph defined by line segments. Surprisingly, the top three teams used the same technique, called conflict optimization. This technique has been introduced in the 2021 edit...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-03 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Crombez, Loïc da Fonseca, Guilherme D Fontan, Florian Yan, Gerard Gonzalez-Lorenzo, Aldo Lafourcade, Pascal Libralesso, Luc Momège, Benjamin Spalding-Jamieson, Jack Zhang, Brandon Da Wei Zheng |
description | CG:SHOP is an annual geometric optimization challenge and the 2022 edition proposed the problem of coloring a certain geometric graph defined by line segments. Surprisingly, the top three teams used the same technique, called conflict optimization. This technique has been introduced in the 2021 edition of the challenge, to solve a coordinated motion planning problem. In this paper, we present the technique in the more general framework of binary constraint satisfaction problems (binary CSP). Then, the top three teams describe their different implementations of the same underlying strategy. We evaluate the performance of those implementations to vertex color not only geometric graphs, but also other types of graphs. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2788895419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2788895419</sourcerecordid><originalsourceid>FETCH-proquest_journals_27888954193</originalsourceid><addsrcrecordid>eNqNiskKwjAURYMgKOo_PHAt1MTadqnBYSMWdC_RDj5JX2KSLvTrHfADXJ3LuafD-lyI6SSdcd5jI-9vURTxecLjWPQZSkOVxkuAvQ3Y4FMFNASVcbBEUu4B8pDDwlqNZQHBwA4Jm7aBXLmA3xbprXOtqIRDe66dslcPigrYfCZIo41DqoesWynty9GPAzZer45yO7HO3NvSh9PNtI7e14knaZpm8Wyaif-qF2nvR-Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2788895419</pqid></control><display><type>article</type><title>Conflict Optimization for Binary CSP Applied to Minimum Partition into Plane Subgraphs and Graph Coloring</title><source>Free E- Journals</source><creator>Crombez, Loïc ; da Fonseca, Guilherme D ; Fontan, Florian ; Yan, Gerard ; Gonzalez-Lorenzo, Aldo ; Lafourcade, Pascal ; Libralesso, Luc ; Momège, Benjamin ; Spalding-Jamieson, Jack ; Zhang, Brandon ; Da Wei Zheng</creator><creatorcontrib>Crombez, Loïc ; da Fonseca, Guilherme D ; Fontan, Florian ; Yan, Gerard ; Gonzalez-Lorenzo, Aldo ; Lafourcade, Pascal ; Libralesso, Luc ; Momège, Benjamin ; Spalding-Jamieson, Jack ; Zhang, Brandon ; Da Wei Zheng</creatorcontrib><description>CG:SHOP is an annual geometric optimization challenge and the 2022 edition proposed the problem of coloring a certain geometric graph defined by line segments. Surprisingly, the top three teams used the same technique, called conflict optimization. This technique has been introduced in the 2021 edition of the challenge, to solve a coordinated motion planning problem. In this paper, we present the technique in the more general framework of binary constraint satisfaction problems (binary CSP). Then, the top three teams describe their different implementations of the same underlying strategy. We evaluate the performance of those implementations to vertex color not only geometric graphs, but also other types of graphs.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Graph coloring ; Graphs ; Motion planning ; Optimization ; Teams</subject><ispartof>arXiv.org, 2023-03</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Crombez, Loïc</creatorcontrib><creatorcontrib>da Fonseca, Guilherme D</creatorcontrib><creatorcontrib>Fontan, Florian</creatorcontrib><creatorcontrib>Yan, Gerard</creatorcontrib><creatorcontrib>Gonzalez-Lorenzo, Aldo</creatorcontrib><creatorcontrib>Lafourcade, Pascal</creatorcontrib><creatorcontrib>Libralesso, Luc</creatorcontrib><creatorcontrib>Momège, Benjamin</creatorcontrib><creatorcontrib>Spalding-Jamieson, Jack</creatorcontrib><creatorcontrib>Zhang, Brandon</creatorcontrib><creatorcontrib>Da Wei Zheng</creatorcontrib><title>Conflict Optimization for Binary CSP Applied to Minimum Partition into Plane Subgraphs and Graph Coloring</title><title>arXiv.org</title><description>CG:SHOP is an annual geometric optimization challenge and the 2022 edition proposed the problem of coloring a certain geometric graph defined by line segments. Surprisingly, the top three teams used the same technique, called conflict optimization. This technique has been introduced in the 2021 edition of the challenge, to solve a coordinated motion planning problem. In this paper, we present the technique in the more general framework of binary constraint satisfaction problems (binary CSP). Then, the top three teams describe their different implementations of the same underlying strategy. We evaluate the performance of those implementations to vertex color not only geometric graphs, but also other types of graphs.</description><subject>Graph coloring</subject><subject>Graphs</subject><subject>Motion planning</subject><subject>Optimization</subject><subject>Teams</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiskKwjAURYMgKOo_PHAt1MTadqnBYSMWdC_RDj5JX2KSLvTrHfADXJ3LuafD-lyI6SSdcd5jI-9vURTxecLjWPQZSkOVxkuAvQ3Y4FMFNASVcbBEUu4B8pDDwlqNZQHBwA4Jm7aBXLmA3xbprXOtqIRDe66dslcPigrYfCZIo41DqoesWynty9GPAzZer45yO7HO3NvSh9PNtI7e14knaZpm8Wyaif-qF2nvR-Y</recordid><startdate>20230325</startdate><enddate>20230325</enddate><creator>Crombez, Loïc</creator><creator>da Fonseca, Guilherme D</creator><creator>Fontan, Florian</creator><creator>Yan, Gerard</creator><creator>Gonzalez-Lorenzo, Aldo</creator><creator>Lafourcade, Pascal</creator><creator>Libralesso, Luc</creator><creator>Momège, Benjamin</creator><creator>Spalding-Jamieson, Jack</creator><creator>Zhang, Brandon</creator><creator>Da Wei Zheng</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230325</creationdate><title>Conflict Optimization for Binary CSP Applied to Minimum Partition into Plane Subgraphs and Graph Coloring</title><author>Crombez, Loïc ; da Fonseca, Guilherme D ; Fontan, Florian ; Yan, Gerard ; Gonzalez-Lorenzo, Aldo ; Lafourcade, Pascal ; Libralesso, Luc ; Momège, Benjamin ; Spalding-Jamieson, Jack ; Zhang, Brandon ; Da Wei Zheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27888954193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Graph coloring</topic><topic>Graphs</topic><topic>Motion planning</topic><topic>Optimization</topic><topic>Teams</topic><toplevel>online_resources</toplevel><creatorcontrib>Crombez, Loïc</creatorcontrib><creatorcontrib>da Fonseca, Guilherme D</creatorcontrib><creatorcontrib>Fontan, Florian</creatorcontrib><creatorcontrib>Yan, Gerard</creatorcontrib><creatorcontrib>Gonzalez-Lorenzo, Aldo</creatorcontrib><creatorcontrib>Lafourcade, Pascal</creatorcontrib><creatorcontrib>Libralesso, Luc</creatorcontrib><creatorcontrib>Momège, Benjamin</creatorcontrib><creatorcontrib>Spalding-Jamieson, Jack</creatorcontrib><creatorcontrib>Zhang, Brandon</creatorcontrib><creatorcontrib>Da Wei Zheng</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crombez, Loïc</au><au>da Fonseca, Guilherme D</au><au>Fontan, Florian</au><au>Yan, Gerard</au><au>Gonzalez-Lorenzo, Aldo</au><au>Lafourcade, Pascal</au><au>Libralesso, Luc</au><au>Momège, Benjamin</au><au>Spalding-Jamieson, Jack</au><au>Zhang, Brandon</au><au>Da Wei Zheng</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Conflict Optimization for Binary CSP Applied to Minimum Partition into Plane Subgraphs and Graph Coloring</atitle><jtitle>arXiv.org</jtitle><date>2023-03-25</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>CG:SHOP is an annual geometric optimization challenge and the 2022 edition proposed the problem of coloring a certain geometric graph defined by line segments. Surprisingly, the top three teams used the same technique, called conflict optimization. This technique has been introduced in the 2021 edition of the challenge, to solve a coordinated motion planning problem. In this paper, we present the technique in the more general framework of binary constraint satisfaction problems (binary CSP). Then, the top three teams describe their different implementations of the same underlying strategy. We evaluate the performance of those implementations to vertex color not only geometric graphs, but also other types of graphs.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2788895419 |
source | Free E- Journals |
subjects | Graph coloring Graphs Motion planning Optimization Teams |
title | Conflict Optimization for Binary CSP Applied to Minimum Partition into Plane Subgraphs and Graph Coloring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A54%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Conflict%20Optimization%20for%20Binary%20CSP%20Applied%20to%20Minimum%20Partition%20into%20Plane%20Subgraphs%20and%20Graph%20Coloring&rft.jtitle=arXiv.org&rft.au=Crombez,%20Lo%C3%AFc&rft.date=2023-03-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2788895419%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2788895419&rft_id=info:pmid/&rfr_iscdi=true |