Hypercubes and Isometric Words based on Swap and Mismatch Distance
The hypercube of dimension n is the graph whose vertices are the 2^n binary words of length n, and there is an edge between two of them if they have Hamming distance 1. We consider an edit distance based on swaps and mismatches, to which we refer as tilde-distance, and define the tilde-hypercube wit...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-03 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Anselmo, Marcella Castiglione, Giuseppa Flores, Manuela Giammarresi, Dora Madonia, Maria Mantaci, Sabrina |
description | The hypercube of dimension n is the graph whose vertices are the 2^n binary words of length n, and there is an edge between two of them if they have Hamming distance 1. We consider an edit distance based on swaps and mismatches, to which we refer as tilde-distance, and define the tilde-hypercube with edges linking words at tilde-distance 1. Then, we introduce and study some isometric subgraphs of the tilde-hypercube obtained by using special words called tilde-isometric words. The subgraphs keep only the vertices that avoid a given tilde-isometric word as a factor. In the case of word 11, the subgraph is called tilde-Fibonacci cube, as a generalization of the classical Fibonacci cube. The tilde-hypercube and the tilde-Fibonacci cube can be recursively defined; the same holds for the number of their edges. This allows an asymptotic estimation of the number of edges in the tilde-Fibonacci cube, in comparison to the total number in the tilde-hypercube. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2788895243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2788895243</sourcerecordid><originalsourceid>FETCH-proquest_journals_27888952433</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtOwScC_WmsXH1jzo4KTiWNL1ii01qbor49or4AE5nON-IRSDEIlEZwITFRG2aprDMQUoRsXXx6tGboULi2tb8QK7D4BvDL87XxCtNWHNn-emp-684NtTpYG5821DQ1uCMja_6Thj_OmXz_e68KZLeu8eAFMrWDd5-Vgm5UmolIRPiP_UGh0c5bQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2788895243</pqid></control><display><type>article</type><title>Hypercubes and Isometric Words based on Swap and Mismatch Distance</title><source>Freely Accessible Journals</source><creator>Anselmo, Marcella ; Castiglione, Giuseppa ; Flores, Manuela ; Giammarresi, Dora ; Madonia, Maria ; Mantaci, Sabrina</creator><creatorcontrib>Anselmo, Marcella ; Castiglione, Giuseppa ; Flores, Manuela ; Giammarresi, Dora ; Madonia, Maria ; Mantaci, Sabrina</creatorcontrib><description>The hypercube of dimension n is the graph whose vertices are the 2^n binary words of length n, and there is an edge between two of them if they have Hamming distance 1. We consider an edit distance based on swaps and mismatches, to which we refer as tilde-distance, and define the tilde-hypercube with edges linking words at tilde-distance 1. Then, we introduce and study some isometric subgraphs of the tilde-hypercube obtained by using special words called tilde-isometric words. The subgraphs keep only the vertices that avoid a given tilde-isometric word as a factor. In the case of word 11, the subgraph is called tilde-Fibonacci cube, as a generalization of the classical Fibonacci cube. The tilde-hypercube and the tilde-Fibonacci cube can be recursively defined; the same holds for the number of their edges. This allows an asymptotic estimation of the number of edges in the tilde-Fibonacci cube, in comparison to the total number in the tilde-hypercube.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Apexes ; Fibonacci numbers ; Graph theory ; Hypercubes</subject><ispartof>arXiv.org, 2023-03</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Anselmo, Marcella</creatorcontrib><creatorcontrib>Castiglione, Giuseppa</creatorcontrib><creatorcontrib>Flores, Manuela</creatorcontrib><creatorcontrib>Giammarresi, Dora</creatorcontrib><creatorcontrib>Madonia, Maria</creatorcontrib><creatorcontrib>Mantaci, Sabrina</creatorcontrib><title>Hypercubes and Isometric Words based on Swap and Mismatch Distance</title><title>arXiv.org</title><description>The hypercube of dimension n is the graph whose vertices are the 2^n binary words of length n, and there is an edge between two of them if they have Hamming distance 1. We consider an edit distance based on swaps and mismatches, to which we refer as tilde-distance, and define the tilde-hypercube with edges linking words at tilde-distance 1. Then, we introduce and study some isometric subgraphs of the tilde-hypercube obtained by using special words called tilde-isometric words. The subgraphs keep only the vertices that avoid a given tilde-isometric word as a factor. In the case of word 11, the subgraph is called tilde-Fibonacci cube, as a generalization of the classical Fibonacci cube. The tilde-hypercube and the tilde-Fibonacci cube can be recursively defined; the same holds for the number of their edges. This allows an asymptotic estimation of the number of edges in the tilde-Fibonacci cube, in comparison to the total number in the tilde-hypercube.</description><subject>Apexes</subject><subject>Fibonacci numbers</subject><subject>Graph theory</subject><subject>Hypercubes</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtOwScC_WmsXH1jzo4KTiWNL1ii01qbor49or4AE5nON-IRSDEIlEZwITFRG2aprDMQUoRsXXx6tGboULi2tb8QK7D4BvDL87XxCtNWHNn-emp-684NtTpYG5821DQ1uCMja_6Thj_OmXz_e68KZLeu8eAFMrWDd5-Vgm5UmolIRPiP_UGh0c5bQ</recordid><startdate>20230317</startdate><enddate>20230317</enddate><creator>Anselmo, Marcella</creator><creator>Castiglione, Giuseppa</creator><creator>Flores, Manuela</creator><creator>Giammarresi, Dora</creator><creator>Madonia, Maria</creator><creator>Mantaci, Sabrina</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230317</creationdate><title>Hypercubes and Isometric Words based on Swap and Mismatch Distance</title><author>Anselmo, Marcella ; Castiglione, Giuseppa ; Flores, Manuela ; Giammarresi, Dora ; Madonia, Maria ; Mantaci, Sabrina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27888952433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Apexes</topic><topic>Fibonacci numbers</topic><topic>Graph theory</topic><topic>Hypercubes</topic><toplevel>online_resources</toplevel><creatorcontrib>Anselmo, Marcella</creatorcontrib><creatorcontrib>Castiglione, Giuseppa</creatorcontrib><creatorcontrib>Flores, Manuela</creatorcontrib><creatorcontrib>Giammarresi, Dora</creatorcontrib><creatorcontrib>Madonia, Maria</creatorcontrib><creatorcontrib>Mantaci, Sabrina</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anselmo, Marcella</au><au>Castiglione, Giuseppa</au><au>Flores, Manuela</au><au>Giammarresi, Dora</au><au>Madonia, Maria</au><au>Mantaci, Sabrina</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Hypercubes and Isometric Words based on Swap and Mismatch Distance</atitle><jtitle>arXiv.org</jtitle><date>2023-03-17</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>The hypercube of dimension n is the graph whose vertices are the 2^n binary words of length n, and there is an edge between two of them if they have Hamming distance 1. We consider an edit distance based on swaps and mismatches, to which we refer as tilde-distance, and define the tilde-hypercube with edges linking words at tilde-distance 1. Then, we introduce and study some isometric subgraphs of the tilde-hypercube obtained by using special words called tilde-isometric words. The subgraphs keep only the vertices that avoid a given tilde-isometric word as a factor. In the case of word 11, the subgraph is called tilde-Fibonacci cube, as a generalization of the classical Fibonacci cube. The tilde-hypercube and the tilde-Fibonacci cube can be recursively defined; the same holds for the number of their edges. This allows an asymptotic estimation of the number of edges in the tilde-Fibonacci cube, in comparison to the total number in the tilde-hypercube.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2788895243 |
source | Freely Accessible Journals |
subjects | Apexes Fibonacci numbers Graph theory Hypercubes |
title | Hypercubes and Isometric Words based on Swap and Mismatch Distance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A43%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Hypercubes%20and%20Isometric%20Words%20based%20on%20Swap%20and%20Mismatch%20Distance&rft.jtitle=arXiv.org&rft.au=Anselmo,%20Marcella&rft.date=2023-03-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2788895243%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2788895243&rft_id=info:pmid/&rfr_iscdi=true |