Hypercubes and Isometric Words based on Swap and Mismatch Distance

The hypercube of dimension n is the graph whose vertices are the 2^n binary words of length n, and there is an edge between two of them if they have Hamming distance 1. We consider an edit distance based on swaps and mismatches, to which we refer as tilde-distance, and define the tilde-hypercube wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-03
Hauptverfasser: Anselmo, Marcella, Castiglione, Giuseppa, Flores, Manuela, Giammarresi, Dora, Madonia, Maria, Mantaci, Sabrina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Anselmo, Marcella
Castiglione, Giuseppa
Flores, Manuela
Giammarresi, Dora
Madonia, Maria
Mantaci, Sabrina
description The hypercube of dimension n is the graph whose vertices are the 2^n binary words of length n, and there is an edge between two of them if they have Hamming distance 1. We consider an edit distance based on swaps and mismatches, to which we refer as tilde-distance, and define the tilde-hypercube with edges linking words at tilde-distance 1. Then, we introduce and study some isometric subgraphs of the tilde-hypercube obtained by using special words called tilde-isometric words. The subgraphs keep only the vertices that avoid a given tilde-isometric word as a factor. In the case of word 11, the subgraph is called tilde-Fibonacci cube, as a generalization of the classical Fibonacci cube. The tilde-hypercube and the tilde-Fibonacci cube can be recursively defined; the same holds for the number of their edges. This allows an asymptotic estimation of the number of edges in the tilde-Fibonacci cube, in comparison to the total number in the tilde-hypercube.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2788895243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2788895243</sourcerecordid><originalsourceid>FETCH-proquest_journals_27888952433</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtOwScC_WmsXH1jzo4KTiWNL1ii01qbor49or4AE5nON-IRSDEIlEZwITFRG2aprDMQUoRsXXx6tGboULi2tb8QK7D4BvDL87XxCtNWHNn-emp-684NtTpYG5821DQ1uCMja_6Thj_OmXz_e68KZLeu8eAFMrWDd5-Vgm5UmolIRPiP_UGh0c5bQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2788895243</pqid></control><display><type>article</type><title>Hypercubes and Isometric Words based on Swap and Mismatch Distance</title><source>Freely Accessible Journals</source><creator>Anselmo, Marcella ; Castiglione, Giuseppa ; Flores, Manuela ; Giammarresi, Dora ; Madonia, Maria ; Mantaci, Sabrina</creator><creatorcontrib>Anselmo, Marcella ; Castiglione, Giuseppa ; Flores, Manuela ; Giammarresi, Dora ; Madonia, Maria ; Mantaci, Sabrina</creatorcontrib><description>The hypercube of dimension n is the graph whose vertices are the 2^n binary words of length n, and there is an edge between two of them if they have Hamming distance 1. We consider an edit distance based on swaps and mismatches, to which we refer as tilde-distance, and define the tilde-hypercube with edges linking words at tilde-distance 1. Then, we introduce and study some isometric subgraphs of the tilde-hypercube obtained by using special words called tilde-isometric words. The subgraphs keep only the vertices that avoid a given tilde-isometric word as a factor. In the case of word 11, the subgraph is called tilde-Fibonacci cube, as a generalization of the classical Fibonacci cube. The tilde-hypercube and the tilde-Fibonacci cube can be recursively defined; the same holds for the number of their edges. This allows an asymptotic estimation of the number of edges in the tilde-Fibonacci cube, in comparison to the total number in the tilde-hypercube.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Apexes ; Fibonacci numbers ; Graph theory ; Hypercubes</subject><ispartof>arXiv.org, 2023-03</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Anselmo, Marcella</creatorcontrib><creatorcontrib>Castiglione, Giuseppa</creatorcontrib><creatorcontrib>Flores, Manuela</creatorcontrib><creatorcontrib>Giammarresi, Dora</creatorcontrib><creatorcontrib>Madonia, Maria</creatorcontrib><creatorcontrib>Mantaci, Sabrina</creatorcontrib><title>Hypercubes and Isometric Words based on Swap and Mismatch Distance</title><title>arXiv.org</title><description>The hypercube of dimension n is the graph whose vertices are the 2^n binary words of length n, and there is an edge between two of them if they have Hamming distance 1. We consider an edit distance based on swaps and mismatches, to which we refer as tilde-distance, and define the tilde-hypercube with edges linking words at tilde-distance 1. Then, we introduce and study some isometric subgraphs of the tilde-hypercube obtained by using special words called tilde-isometric words. The subgraphs keep only the vertices that avoid a given tilde-isometric word as a factor. In the case of word 11, the subgraph is called tilde-Fibonacci cube, as a generalization of the classical Fibonacci cube. The tilde-hypercube and the tilde-Fibonacci cube can be recursively defined; the same holds for the number of their edges. This allows an asymptotic estimation of the number of edges in the tilde-Fibonacci cube, in comparison to the total number in the tilde-hypercube.</description><subject>Apexes</subject><subject>Fibonacci numbers</subject><subject>Graph theory</subject><subject>Hypercubes</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtOwScC_WmsXH1jzo4KTiWNL1ii01qbor49or4AE5nON-IRSDEIlEZwITFRG2aprDMQUoRsXXx6tGboULi2tb8QK7D4BvDL87XxCtNWHNn-emp-684NtTpYG5821DQ1uCMja_6Thj_OmXz_e68KZLeu8eAFMrWDd5-Vgm5UmolIRPiP_UGh0c5bQ</recordid><startdate>20230317</startdate><enddate>20230317</enddate><creator>Anselmo, Marcella</creator><creator>Castiglione, Giuseppa</creator><creator>Flores, Manuela</creator><creator>Giammarresi, Dora</creator><creator>Madonia, Maria</creator><creator>Mantaci, Sabrina</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230317</creationdate><title>Hypercubes and Isometric Words based on Swap and Mismatch Distance</title><author>Anselmo, Marcella ; Castiglione, Giuseppa ; Flores, Manuela ; Giammarresi, Dora ; Madonia, Maria ; Mantaci, Sabrina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27888952433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Apexes</topic><topic>Fibonacci numbers</topic><topic>Graph theory</topic><topic>Hypercubes</topic><toplevel>online_resources</toplevel><creatorcontrib>Anselmo, Marcella</creatorcontrib><creatorcontrib>Castiglione, Giuseppa</creatorcontrib><creatorcontrib>Flores, Manuela</creatorcontrib><creatorcontrib>Giammarresi, Dora</creatorcontrib><creatorcontrib>Madonia, Maria</creatorcontrib><creatorcontrib>Mantaci, Sabrina</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anselmo, Marcella</au><au>Castiglione, Giuseppa</au><au>Flores, Manuela</au><au>Giammarresi, Dora</au><au>Madonia, Maria</au><au>Mantaci, Sabrina</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Hypercubes and Isometric Words based on Swap and Mismatch Distance</atitle><jtitle>arXiv.org</jtitle><date>2023-03-17</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>The hypercube of dimension n is the graph whose vertices are the 2^n binary words of length n, and there is an edge between two of them if they have Hamming distance 1. We consider an edit distance based on swaps and mismatches, to which we refer as tilde-distance, and define the tilde-hypercube with edges linking words at tilde-distance 1. Then, we introduce and study some isometric subgraphs of the tilde-hypercube obtained by using special words called tilde-isometric words. The subgraphs keep only the vertices that avoid a given tilde-isometric word as a factor. In the case of word 11, the subgraph is called tilde-Fibonacci cube, as a generalization of the classical Fibonacci cube. The tilde-hypercube and the tilde-Fibonacci cube can be recursively defined; the same holds for the number of their edges. This allows an asymptotic estimation of the number of edges in the tilde-Fibonacci cube, in comparison to the total number in the tilde-hypercube.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2788895243
source Freely Accessible Journals
subjects Apexes
Fibonacci numbers
Graph theory
Hypercubes
title Hypercubes and Isometric Words based on Swap and Mismatch Distance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A43%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Hypercubes%20and%20Isometric%20Words%20based%20on%20Swap%20and%20Mismatch%20Distance&rft.jtitle=arXiv.org&rft.au=Anselmo,%20Marcella&rft.date=2023-03-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2788895243%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2788895243&rft_id=info:pmid/&rfr_iscdi=true