Enhanced photocatalytic activity of ZnO–NiO nanocomposites synthesized through a facile sonochemical route

Formation of heterostructures with p-type oxides such as NiO and CuO is one of the effective methods for improving the photocatalytic performance of ZnO. Such systems are often synthesized through template-based growth techniques that involve many steps. We have prepared ZnO–NiO composites through a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SN applied sciences 2019-11, Vol.1 (11), p.1478, Article 1478
Hauptverfasser: Udayachandran Thampy, U. S., Mahesh, A., Sibi, K. S., Jawahar, I. N., Biju, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 1478
container_title SN applied sciences
container_volume 1
creator Udayachandran Thampy, U. S.
Mahesh, A.
Sibi, K. S.
Jawahar, I. N.
Biju, V.
description Formation of heterostructures with p-type oxides such as NiO and CuO is one of the effective methods for improving the photocatalytic performance of ZnO. Such systems are often synthesized through template-based growth techniques that involve many steps. We have prepared ZnO–NiO composites through a facile, template-free, low-temperature sonochemical route. High-resolution transmission electron microscopy analysis indicates the formation of ZnO–NiO heterostructures. Photocatalytic activity of ZnO–NiO nanocomposites in the decomposition of methylene blue dye under solar irradiation is found to be much larger than that of both pure ZnO (1.26 × 10 −2  min −1 ) and NiO (0.31 × 10 −2  min −1 ) establishing synergistic effects. The rate constant increases with increase in the percentage of NiO in the composite and is 6.00 × 10 −2  min −1 for sample with the highest percentage of NiO. Rate constants for the second and third runs are estimated to be 4.4 × 10 −2  and 4.2 × 10 −2  min −1 which are promising. The main mechanism of enhancement of photocatalytic activity of the composites is identified as the more effective separation of the photogenerated free charge carries due to the internal electric field at the ZnO–NiO interface. Sharp decrease in the relative intensity of the band–band emission of ZnO at ~ 380 nm in the case of composite samples and analysis of the relative position of the conduction band and valence band edges of ZnO and NiO support the proposed mechanism.
doi_str_mv 10.1007/s42452-019-1426-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2788459623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2788459623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-7977eaeb7395c3dd8e6ca13f96527ffd500d2d27db436ebb49af44c22bc17fcc3</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWGofwF3A9WhuM5kspdQLFLvRjZuQySSdlOmkTlJhuvIdfEOfxJQRXbk6B873_wc-AC4xusYI8ZvACMtJhrDIMCNFdjgBE5ITmlHB8envXtBzMAthgxAiXFBW0gloF12jOm1quGt89FpF1Q7Raah0dO8uDtBb-Nqtvj4-n9wKdqrz2m93PrhoAgxDFxsT3CHlY9P7_bqBClqlXWtg8IltzNZp1cJ0i-YCnFnVBjP7mVPwcrd4nj9ky9X94_x2mWmai5hxwblRpuJU5JrWdWkKrTC1osgJt7bOEapJTXhdMVqYqmJCWcY0IZXG3GpNp-Bq7N31_m1vQpQbv--79FISXpYsFwWhicIjpXsfQm-s3PVuq_pBYiSPXuXoVSav8uhVHlKGjJmQ2G5t-r_m_0Pfu5d_Pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2788459623</pqid></control><display><type>article</type><title>Enhanced photocatalytic activity of ZnO–NiO nanocomposites synthesized through a facile sonochemical route</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Udayachandran Thampy, U. S. ; Mahesh, A. ; Sibi, K. S. ; Jawahar, I. N. ; Biju, V.</creator><creatorcontrib>Udayachandran Thampy, U. S. ; Mahesh, A. ; Sibi, K. S. ; Jawahar, I. N. ; Biju, V.</creatorcontrib><description>Formation of heterostructures with p-type oxides such as NiO and CuO is one of the effective methods for improving the photocatalytic performance of ZnO. Such systems are often synthesized through template-based growth techniques that involve many steps. We have prepared ZnO–NiO composites through a facile, template-free, low-temperature sonochemical route. High-resolution transmission electron microscopy analysis indicates the formation of ZnO–NiO heterostructures. Photocatalytic activity of ZnO–NiO nanocomposites in the decomposition of methylene blue dye under solar irradiation is found to be much larger than that of both pure ZnO (1.26 × 10 −2  min −1 ) and NiO (0.31 × 10 −2  min −1 ) establishing synergistic effects. The rate constant increases with increase in the percentage of NiO in the composite and is 6.00 × 10 −2  min −1 for sample with the highest percentage of NiO. Rate constants for the second and third runs are estimated to be 4.4 × 10 −2  and 4.2 × 10 −2  min −1 which are promising. The main mechanism of enhancement of photocatalytic activity of the composites is identified as the more effective separation of the photogenerated free charge carries due to the internal electric field at the ZnO–NiO interface. Sharp decrease in the relative intensity of the band–band emission of ZnO at ~ 380 nm in the case of composite samples and analysis of the relative position of the conduction band and valence band edges of ZnO and NiO support the proposed mechanism.</description><identifier>ISSN: 2523-3963</identifier><identifier>EISSN: 2523-3971</identifier><identifier>DOI: 10.1007/s42452-019-1426-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>4. Materials (general) ; Applied and Technical Physics ; Catalytic activity ; Chemistry/Food Science ; Conduction bands ; Current carriers ; Decomposition ; Earth Sciences ; Electric fields ; Engineering ; Environment ; Graphene ; Heterostructures ; High resolution electron microscopy ; High temperature ; Irradiation ; Low temperature ; Materials Science ; Metals ; Methylene blue ; Nanocomposites ; Nickel oxides ; Photocatalysis ; Photovoltaic cells ; Pollutants ; Radiation ; Rate constants ; Research Article ; Solar radiation ; Synergistic effect ; Synthesis ; System effectiveness ; Transmission electron microscopy ; Valence band ; Zinc oxide ; Zinc oxides</subject><ispartof>SN applied sciences, 2019-11, Vol.1 (11), p.1478, Article 1478</ispartof><rights>Springer Nature Switzerland AG 2019</rights><rights>Springer Nature Switzerland AG 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-7977eaeb7395c3dd8e6ca13f96527ffd500d2d27db436ebb49af44c22bc17fcc3</citedby><cites>FETCH-LOGICAL-c359t-7977eaeb7395c3dd8e6ca13f96527ffd500d2d27db436ebb49af44c22bc17fcc3</cites><orcidid>0000-0001-6591-1401</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Udayachandran Thampy, U. S.</creatorcontrib><creatorcontrib>Mahesh, A.</creatorcontrib><creatorcontrib>Sibi, K. S.</creatorcontrib><creatorcontrib>Jawahar, I. N.</creatorcontrib><creatorcontrib>Biju, V.</creatorcontrib><title>Enhanced photocatalytic activity of ZnO–NiO nanocomposites synthesized through a facile sonochemical route</title><title>SN applied sciences</title><addtitle>SN Appl. Sci</addtitle><description>Formation of heterostructures with p-type oxides such as NiO and CuO is one of the effective methods for improving the photocatalytic performance of ZnO. Such systems are often synthesized through template-based growth techniques that involve many steps. We have prepared ZnO–NiO composites through a facile, template-free, low-temperature sonochemical route. High-resolution transmission electron microscopy analysis indicates the formation of ZnO–NiO heterostructures. Photocatalytic activity of ZnO–NiO nanocomposites in the decomposition of methylene blue dye under solar irradiation is found to be much larger than that of both pure ZnO (1.26 × 10 −2  min −1 ) and NiO (0.31 × 10 −2  min −1 ) establishing synergistic effects. The rate constant increases with increase in the percentage of NiO in the composite and is 6.00 × 10 −2  min −1 for sample with the highest percentage of NiO. Rate constants for the second and third runs are estimated to be 4.4 × 10 −2  and 4.2 × 10 −2  min −1 which are promising. The main mechanism of enhancement of photocatalytic activity of the composites is identified as the more effective separation of the photogenerated free charge carries due to the internal electric field at the ZnO–NiO interface. Sharp decrease in the relative intensity of the band–band emission of ZnO at ~ 380 nm in the case of composite samples and analysis of the relative position of the conduction band and valence band edges of ZnO and NiO support the proposed mechanism.</description><subject>4. Materials (general)</subject><subject>Applied and Technical Physics</subject><subject>Catalytic activity</subject><subject>Chemistry/Food Science</subject><subject>Conduction bands</subject><subject>Current carriers</subject><subject>Decomposition</subject><subject>Earth Sciences</subject><subject>Electric fields</subject><subject>Engineering</subject><subject>Environment</subject><subject>Graphene</subject><subject>Heterostructures</subject><subject>High resolution electron microscopy</subject><subject>High temperature</subject><subject>Irradiation</subject><subject>Low temperature</subject><subject>Materials Science</subject><subject>Metals</subject><subject>Methylene blue</subject><subject>Nanocomposites</subject><subject>Nickel oxides</subject><subject>Photocatalysis</subject><subject>Photovoltaic cells</subject><subject>Pollutants</subject><subject>Radiation</subject><subject>Rate constants</subject><subject>Research Article</subject><subject>Solar radiation</subject><subject>Synergistic effect</subject><subject>Synthesis</subject><subject>System effectiveness</subject><subject>Transmission electron microscopy</subject><subject>Valence band</subject><subject>Zinc oxide</subject><subject>Zinc oxides</subject><issn>2523-3963</issn><issn>2523-3971</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMoWGofwF3A9WhuM5kspdQLFLvRjZuQySSdlOmkTlJhuvIdfEOfxJQRXbk6B873_wc-AC4xusYI8ZvACMtJhrDIMCNFdjgBE5ITmlHB8envXtBzMAthgxAiXFBW0gloF12jOm1quGt89FpF1Q7Raah0dO8uDtBb-Nqtvj4-n9wKdqrz2m93PrhoAgxDFxsT3CHlY9P7_bqBClqlXWtg8IltzNZp1cJ0i-YCnFnVBjP7mVPwcrd4nj9ky9X94_x2mWmai5hxwblRpuJU5JrWdWkKrTC1osgJt7bOEapJTXhdMVqYqmJCWcY0IZXG3GpNp-Bq7N31_m1vQpQbv--79FISXpYsFwWhicIjpXsfQm-s3PVuq_pBYiSPXuXoVSav8uhVHlKGjJmQ2G5t-r_m_0Pfu5d_Pw</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Udayachandran Thampy, U. S.</creator><creator>Mahesh, A.</creator><creator>Sibi, K. S.</creator><creator>Jawahar, I. N.</creator><creator>Biju, V.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6591-1401</orcidid></search><sort><creationdate>20191101</creationdate><title>Enhanced photocatalytic activity of ZnO–NiO nanocomposites synthesized through a facile sonochemical route</title><author>Udayachandran Thampy, U. S. ; Mahesh, A. ; Sibi, K. S. ; Jawahar, I. N. ; Biju, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-7977eaeb7395c3dd8e6ca13f96527ffd500d2d27db436ebb49af44c22bc17fcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>4. Materials (general)</topic><topic>Applied and Technical Physics</topic><topic>Catalytic activity</topic><topic>Chemistry/Food Science</topic><topic>Conduction bands</topic><topic>Current carriers</topic><topic>Decomposition</topic><topic>Earth Sciences</topic><topic>Electric fields</topic><topic>Engineering</topic><topic>Environment</topic><topic>Graphene</topic><topic>Heterostructures</topic><topic>High resolution electron microscopy</topic><topic>High temperature</topic><topic>Irradiation</topic><topic>Low temperature</topic><topic>Materials Science</topic><topic>Metals</topic><topic>Methylene blue</topic><topic>Nanocomposites</topic><topic>Nickel oxides</topic><topic>Photocatalysis</topic><topic>Photovoltaic cells</topic><topic>Pollutants</topic><topic>Radiation</topic><topic>Rate constants</topic><topic>Research Article</topic><topic>Solar radiation</topic><topic>Synergistic effect</topic><topic>Synthesis</topic><topic>System effectiveness</topic><topic>Transmission electron microscopy</topic><topic>Valence band</topic><topic>Zinc oxide</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Udayachandran Thampy, U. S.</creatorcontrib><creatorcontrib>Mahesh, A.</creatorcontrib><creatorcontrib>Sibi, K. S.</creatorcontrib><creatorcontrib>Jawahar, I. N.</creatorcontrib><creatorcontrib>Biju, V.</creatorcontrib><collection>CrossRef</collection><jtitle>SN applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Udayachandran Thampy, U. S.</au><au>Mahesh, A.</au><au>Sibi, K. S.</au><au>Jawahar, I. N.</au><au>Biju, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced photocatalytic activity of ZnO–NiO nanocomposites synthesized through a facile sonochemical route</atitle><jtitle>SN applied sciences</jtitle><stitle>SN Appl. Sci</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>1</volume><issue>11</issue><spage>1478</spage><pages>1478-</pages><artnum>1478</artnum><issn>2523-3963</issn><eissn>2523-3971</eissn><abstract>Formation of heterostructures with p-type oxides such as NiO and CuO is one of the effective methods for improving the photocatalytic performance of ZnO. Such systems are often synthesized through template-based growth techniques that involve many steps. We have prepared ZnO–NiO composites through a facile, template-free, low-temperature sonochemical route. High-resolution transmission electron microscopy analysis indicates the formation of ZnO–NiO heterostructures. Photocatalytic activity of ZnO–NiO nanocomposites in the decomposition of methylene blue dye under solar irradiation is found to be much larger than that of both pure ZnO (1.26 × 10 −2  min −1 ) and NiO (0.31 × 10 −2  min −1 ) establishing synergistic effects. The rate constant increases with increase in the percentage of NiO in the composite and is 6.00 × 10 −2  min −1 for sample with the highest percentage of NiO. Rate constants for the second and third runs are estimated to be 4.4 × 10 −2  and 4.2 × 10 −2  min −1 which are promising. The main mechanism of enhancement of photocatalytic activity of the composites is identified as the more effective separation of the photogenerated free charge carries due to the internal electric field at the ZnO–NiO interface. Sharp decrease in the relative intensity of the band–band emission of ZnO at ~ 380 nm in the case of composite samples and analysis of the relative position of the conduction band and valence band edges of ZnO and NiO support the proposed mechanism.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s42452-019-1426-z</doi><orcidid>https://orcid.org/0000-0001-6591-1401</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2523-3963
ispartof SN applied sciences, 2019-11, Vol.1 (11), p.1478, Article 1478
issn 2523-3963
2523-3971
language eng
recordid cdi_proquest_journals_2788459623
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects 4. Materials (general)
Applied and Technical Physics
Catalytic activity
Chemistry/Food Science
Conduction bands
Current carriers
Decomposition
Earth Sciences
Electric fields
Engineering
Environment
Graphene
Heterostructures
High resolution electron microscopy
High temperature
Irradiation
Low temperature
Materials Science
Metals
Methylene blue
Nanocomposites
Nickel oxides
Photocatalysis
Photovoltaic cells
Pollutants
Radiation
Rate constants
Research Article
Solar radiation
Synergistic effect
Synthesis
System effectiveness
Transmission electron microscopy
Valence band
Zinc oxide
Zinc oxides
title Enhanced photocatalytic activity of ZnO–NiO nanocomposites synthesized through a facile sonochemical route
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T17%3A58%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20photocatalytic%20activity%20of%20ZnO%E2%80%93NiO%20nanocomposites%20synthesized%20through%20a%20facile%20sonochemical%20route&rft.jtitle=SN%20applied%20sciences&rft.au=Udayachandran%20Thampy,%20U.%20S.&rft.date=2019-11-01&rft.volume=1&rft.issue=11&rft.spage=1478&rft.pages=1478-&rft.artnum=1478&rft.issn=2523-3963&rft.eissn=2523-3971&rft_id=info:doi/10.1007/s42452-019-1426-z&rft_dat=%3Cproquest_cross%3E2788459623%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2788459623&rft_id=info:pmid/&rfr_iscdi=true