An ultra-low-power low-noise amplifier using cross-coupled positive feedback for 5G IoT applications
The wireless communication in the next generation is bound to be driven by massive machine-type communication or in other words Internet-of-things (IoT). In the near future, the need for effective communication and higher data processing rates will require IoT devices to support 5G networks. For 5G...
Gespeichert in:
Veröffentlicht in: | SN applied sciences 2019-11, Vol.1 (11), p.1418, Article 1418 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 1418 |
container_title | SN applied sciences |
container_volume | 1 |
creator | Gladson, S. Chrisben Narayana, Adith Hari Bhaskar, M. |
description | The wireless communication in the next generation is bound to be driven by massive machine-type communication or in other words Internet-of-things (IoT). In the near future, the need for effective communication and higher data processing rates will require IoT devices to support 5G networks. For 5G IoT applications in the ultra-wideband range (3.1–10.6 GHz), the analog receivers must provide both high-performance and energy efficiency simultaneously. This work addresses the demands of 5G IoT analog receivers by proposing an ultra-low-power low noise amplifier (LNA) employing cross-coupled positive shunt feedback. The proposed LNA is designed in UMC 180 nm deep n-well process, and the post-layout characterization is done using Cadence SpectreRF. The proposed design achieves a peak gain of 9.94 dB and a noise figure of 3.2–1.086 dB along the usable bandwidth of 3.2–9.625 GHz while consuming an ultra-low-power of 493 µW from a 1-V power supply. The maximum input-referred third-order intercept point of 8.81 dBm is attained for an input signal at 2.4 GHz and the interferer as close as 2.425 GHz. The LNA consumes a minimal layout area of only 676.2 µm × 350.7 µm. The proposed LNA has the better figure-of-merit while consuming almost 50% less power than the recently reported sub-mW LNA in literature. |
doi_str_mv | 10.1007/s42452-019-1470-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2788459195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2788459195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-94295916c832165192ecf2ebfe172d01031666263b93714539b1690538bbf0c83</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWGo_gLeA52gm2WQ3x1K0Fgpe6jnsn6Skbjdrsmvx25u1oidP8xje-w3zELoFeg-U5g8xY5lghIIikOWUFBdoxgTjhKscLn-15NdoEeOBUspyxbOCz1Cz7PDYDqEkrT-R3p9MwJPqvIsGl8e-ddal3Rhdt8d18DGS2o99axrc--gG92GwNaapyvoNWx-wWOON3-GyT9G6HJzv4g26smUbzeJnztHr0-Nu9Uy2L-vNarklNRdqICpjSiiQdcEZSAGKmdoyU1kDOWsoUA5SSiZ5pXgOmeCqAqmo4EVVWZpSc3R35vbBv48mDvrgx9Clk5rlRZEluBLJBWfX9zfBWN0HdyzDpwaqpz71uU-d-tRTn3ois3MmJm-3N-GP_H_oC38XdsE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2788459195</pqid></control><display><type>article</type><title>An ultra-low-power low-noise amplifier using cross-coupled positive feedback for 5G IoT applications</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Gladson, S. Chrisben ; Narayana, Adith Hari ; Bhaskar, M.</creator><creatorcontrib>Gladson, S. Chrisben ; Narayana, Adith Hari ; Bhaskar, M.</creatorcontrib><description>The wireless communication in the next generation is bound to be driven by massive machine-type communication or in other words Internet-of-things (IoT). In the near future, the need for effective communication and higher data processing rates will require IoT devices to support 5G networks. For 5G IoT applications in the ultra-wideband range (3.1–10.6 GHz), the analog receivers must provide both high-performance and energy efficiency simultaneously. This work addresses the demands of 5G IoT analog receivers by proposing an ultra-low-power low noise amplifier (LNA) employing cross-coupled positive shunt feedback. The proposed LNA is designed in UMC 180 nm deep n-well process, and the post-layout characterization is done using Cadence SpectreRF. The proposed design achieves a peak gain of 9.94 dB and a noise figure of 3.2–1.086 dB along the usable bandwidth of 3.2–9.625 GHz while consuming an ultra-low-power of 493 µW from a 1-V power supply. The maximum input-referred third-order intercept point of 8.81 dBm is attained for an input signal at 2.4 GHz and the interferer as close as 2.425 GHz. The LNA consumes a minimal layout area of only 676.2 µm × 350.7 µm. The proposed LNA has the better figure-of-merit while consuming almost 50% less power than the recently reported sub-mW LNA in literature.</description><identifier>ISSN: 2523-3963</identifier><identifier>EISSN: 2523-3971</identifier><identifier>DOI: 10.1007/s42452-019-1470-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>5G mobile communication ; Amplifiers ; Applied and Technical Physics ; Bandwidths ; Broadcasting ; Chemistry/Food Science ; Circuits ; Communication ; Data processing ; Design ; Earth Sciences ; Energy efficiency ; Engineering ; Engineering: Communications Systems: Transceivers ; Environment ; Feedback ; Internet of Things ; Layouts ; Low noise ; Materials Science ; Networking ; Noise levels ; Positive feedback ; Power management ; Radars ; Receivers ; Research Article ; SDR ; Spectrum allocation ; Telecommunications ; Third order intercept point ; Transistors ; Ultrawideband ; Wireless communications</subject><ispartof>SN applied sciences, 2019-11, Vol.1 (11), p.1418, Article 1418</ispartof><rights>Springer Nature Switzerland AG 2019</rights><rights>Springer Nature Switzerland AG 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-94295916c832165192ecf2ebfe172d01031666263b93714539b1690538bbf0c83</citedby><cites>FETCH-LOGICAL-c359t-94295916c832165192ecf2ebfe172d01031666263b93714539b1690538bbf0c83</cites><orcidid>0000-0002-9856-8248</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gladson, S. Chrisben</creatorcontrib><creatorcontrib>Narayana, Adith Hari</creatorcontrib><creatorcontrib>Bhaskar, M.</creatorcontrib><title>An ultra-low-power low-noise amplifier using cross-coupled positive feedback for 5G IoT applications</title><title>SN applied sciences</title><addtitle>SN Appl. Sci</addtitle><description>The wireless communication in the next generation is bound to be driven by massive machine-type communication or in other words Internet-of-things (IoT). In the near future, the need for effective communication and higher data processing rates will require IoT devices to support 5G networks. For 5G IoT applications in the ultra-wideband range (3.1–10.6 GHz), the analog receivers must provide both high-performance and energy efficiency simultaneously. This work addresses the demands of 5G IoT analog receivers by proposing an ultra-low-power low noise amplifier (LNA) employing cross-coupled positive shunt feedback. The proposed LNA is designed in UMC 180 nm deep n-well process, and the post-layout characterization is done using Cadence SpectreRF. The proposed design achieves a peak gain of 9.94 dB and a noise figure of 3.2–1.086 dB along the usable bandwidth of 3.2–9.625 GHz while consuming an ultra-low-power of 493 µW from a 1-V power supply. The maximum input-referred third-order intercept point of 8.81 dBm is attained for an input signal at 2.4 GHz and the interferer as close as 2.425 GHz. The LNA consumes a minimal layout area of only 676.2 µm × 350.7 µm. The proposed LNA has the better figure-of-merit while consuming almost 50% less power than the recently reported sub-mW LNA in literature.</description><subject>5G mobile communication</subject><subject>Amplifiers</subject><subject>Applied and Technical Physics</subject><subject>Bandwidths</subject><subject>Broadcasting</subject><subject>Chemistry/Food Science</subject><subject>Circuits</subject><subject>Communication</subject><subject>Data processing</subject><subject>Design</subject><subject>Earth Sciences</subject><subject>Energy efficiency</subject><subject>Engineering</subject><subject>Engineering: Communications Systems: Transceivers</subject><subject>Environment</subject><subject>Feedback</subject><subject>Internet of Things</subject><subject>Layouts</subject><subject>Low noise</subject><subject>Materials Science</subject><subject>Networking</subject><subject>Noise levels</subject><subject>Positive feedback</subject><subject>Power management</subject><subject>Radars</subject><subject>Receivers</subject><subject>Research Article</subject><subject>SDR</subject><subject>Spectrum allocation</subject><subject>Telecommunications</subject><subject>Third order intercept point</subject><subject>Transistors</subject><subject>Ultrawideband</subject><subject>Wireless communications</subject><issn>2523-3963</issn><issn>2523-3971</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWGo_gLeA52gm2WQ3x1K0Fgpe6jnsn6Skbjdrsmvx25u1oidP8xje-w3zELoFeg-U5g8xY5lghIIikOWUFBdoxgTjhKscLn-15NdoEeOBUspyxbOCz1Cz7PDYDqEkrT-R3p9MwJPqvIsGl8e-ddal3Rhdt8d18DGS2o99axrc--gG92GwNaapyvoNWx-wWOON3-GyT9G6HJzv4g26smUbzeJnztHr0-Nu9Uy2L-vNarklNRdqICpjSiiQdcEZSAGKmdoyU1kDOWsoUA5SSiZ5pXgOmeCqAqmo4EVVWZpSc3R35vbBv48mDvrgx9Clk5rlRZEluBLJBWfX9zfBWN0HdyzDpwaqpz71uU-d-tRTn3ois3MmJm-3N-GP_H_oC38XdsE</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Gladson, S. Chrisben</creator><creator>Narayana, Adith Hari</creator><creator>Bhaskar, M.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9856-8248</orcidid></search><sort><creationdate>20191101</creationdate><title>An ultra-low-power low-noise amplifier using cross-coupled positive feedback for 5G IoT applications</title><author>Gladson, S. Chrisben ; Narayana, Adith Hari ; Bhaskar, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-94295916c832165192ecf2ebfe172d01031666263b93714539b1690538bbf0c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>5G mobile communication</topic><topic>Amplifiers</topic><topic>Applied and Technical Physics</topic><topic>Bandwidths</topic><topic>Broadcasting</topic><topic>Chemistry/Food Science</topic><topic>Circuits</topic><topic>Communication</topic><topic>Data processing</topic><topic>Design</topic><topic>Earth Sciences</topic><topic>Energy efficiency</topic><topic>Engineering</topic><topic>Engineering: Communications Systems: Transceivers</topic><topic>Environment</topic><topic>Feedback</topic><topic>Internet of Things</topic><topic>Layouts</topic><topic>Low noise</topic><topic>Materials Science</topic><topic>Networking</topic><topic>Noise levels</topic><topic>Positive feedback</topic><topic>Power management</topic><topic>Radars</topic><topic>Receivers</topic><topic>Research Article</topic><topic>SDR</topic><topic>Spectrum allocation</topic><topic>Telecommunications</topic><topic>Third order intercept point</topic><topic>Transistors</topic><topic>Ultrawideband</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gladson, S. Chrisben</creatorcontrib><creatorcontrib>Narayana, Adith Hari</creatorcontrib><creatorcontrib>Bhaskar, M.</creatorcontrib><collection>CrossRef</collection><jtitle>SN applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gladson, S. Chrisben</au><au>Narayana, Adith Hari</au><au>Bhaskar, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An ultra-low-power low-noise amplifier using cross-coupled positive feedback for 5G IoT applications</atitle><jtitle>SN applied sciences</jtitle><stitle>SN Appl. Sci</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>1</volume><issue>11</issue><spage>1418</spage><pages>1418-</pages><artnum>1418</artnum><issn>2523-3963</issn><eissn>2523-3971</eissn><abstract>The wireless communication in the next generation is bound to be driven by massive machine-type communication or in other words Internet-of-things (IoT). In the near future, the need for effective communication and higher data processing rates will require IoT devices to support 5G networks. For 5G IoT applications in the ultra-wideband range (3.1–10.6 GHz), the analog receivers must provide both high-performance and energy efficiency simultaneously. This work addresses the demands of 5G IoT analog receivers by proposing an ultra-low-power low noise amplifier (LNA) employing cross-coupled positive shunt feedback. The proposed LNA is designed in UMC 180 nm deep n-well process, and the post-layout characterization is done using Cadence SpectreRF. The proposed design achieves a peak gain of 9.94 dB and a noise figure of 3.2–1.086 dB along the usable bandwidth of 3.2–9.625 GHz while consuming an ultra-low-power of 493 µW from a 1-V power supply. The maximum input-referred third-order intercept point of 8.81 dBm is attained for an input signal at 2.4 GHz and the interferer as close as 2.425 GHz. The LNA consumes a minimal layout area of only 676.2 µm × 350.7 µm. The proposed LNA has the better figure-of-merit while consuming almost 50% less power than the recently reported sub-mW LNA in literature.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s42452-019-1470-8</doi><orcidid>https://orcid.org/0000-0002-9856-8248</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2523-3963 |
ispartof | SN applied sciences, 2019-11, Vol.1 (11), p.1418, Article 1418 |
issn | 2523-3963 2523-3971 |
language | eng |
recordid | cdi_proquest_journals_2788459195 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | 5G mobile communication Amplifiers Applied and Technical Physics Bandwidths Broadcasting Chemistry/Food Science Circuits Communication Data processing Design Earth Sciences Energy efficiency Engineering Engineering: Communications Systems: Transceivers Environment Feedback Internet of Things Layouts Low noise Materials Science Networking Noise levels Positive feedback Power management Radars Receivers Research Article SDR Spectrum allocation Telecommunications Third order intercept point Transistors Ultrawideband Wireless communications |
title | An ultra-low-power low-noise amplifier using cross-coupled positive feedback for 5G IoT applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A36%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20ultra-low-power%20low-noise%20amplifier%20using%20cross-coupled%20positive%20feedback%20for%205G%20IoT%20applications&rft.jtitle=SN%20applied%20sciences&rft.au=Gladson,%20S.%20Chrisben&rft.date=2019-11-01&rft.volume=1&rft.issue=11&rft.spage=1418&rft.pages=1418-&rft.artnum=1418&rft.issn=2523-3963&rft.eissn=2523-3971&rft_id=info:doi/10.1007/s42452-019-1470-8&rft_dat=%3Cproquest_cross%3E2788459195%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2788459195&rft_id=info:pmid/&rfr_iscdi=true |