Efficiently Computing Shortest Paths on Curved Surfaces with Newton's Method
Geodesics are important in the study of metric geometry. Although Euler–Lagrange equations are used to formulate geodesics, closed-form solutions are not available except in a few cases. Therefore, researchers have to seek for numerical methods instead of finding geodesics in computer vision and gra...
Gespeichert in:
Veröffentlicht in: | Engineering letters 2023-02, Vol.31 (1), p.338 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 338 |
container_title | Engineering letters |
container_volume | 31 |
creator | Liu, Ruyuan Xiao, Fengyang Meng, Wenlong |
description | Geodesics are important in the study of metric geometry. Although Euler–Lagrange equations are used to formulate geodesics, closed-form solutions are not available except in a few cases. Therefore, researchers have to seek for numerical methods instead of finding geodesics in computer vision and graphics. In this paper, we first formulate the computation of geodesics on a parametric surface into an optimizationdriven problem and then propose an efficient solution to the optimization problem with a second-order Newton iteration method. The comparative study shows that our algorithm is an order of magnitude faster than the existing approaches for the same level of accuracy. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2788457527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2788457527</sourcerecordid><originalsourceid>FETCH-LOGICAL-p98t-9ece1922ea9ca656e94cbcb484c8e5ed69ef8f663976f0c00b780a749fece7313</originalsourceid><addsrcrecordid>eNo9jl1LwzAYhYMoOLb9h4AXXhXS5vtSyvyAToXtYncjTd_YyGxqkjr89xYUr865ec5zLtCiVKUoiGbq8r_TwzVap-RbwpikXBO-QM3GOW89DPn0jevwMU7ZD29414eYIWX8anKfcBhwPcUv6PBuis5YSPjsc4-f4ZzDcJvwFnIfuhW6cuaUYP2XS7S_3-zrx6J5eXiq75pi1CoXGiyUuqrAaGsEF6CZbW3LFLMKOHRCg1NOCKqlcMQS0kpFjGTazaCkJV2im9_ZMYbPaX55fA9THGbjsZJKMS55JekP5BRMKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2788457527</pqid></control><display><type>article</type><title>Efficiently Computing Shortest Paths on Curved Surfaces with Newton's Method</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Liu, Ruyuan ; Xiao, Fengyang ; Meng, Wenlong</creator><creatorcontrib>Liu, Ruyuan ; Xiao, Fengyang ; Meng, Wenlong</creatorcontrib><description>Geodesics are important in the study of metric geometry. Although Euler–Lagrange equations are used to formulate geodesics, closed-form solutions are not available except in a few cases. Therefore, researchers have to seek for numerical methods instead of finding geodesics in computer vision and graphics. In this paper, we first formulate the computation of geodesics on a parametric surface into an optimizationdriven problem and then propose an efficient solution to the optimization problem with a second-order Newton iteration method. The comparative study shows that our algorithm is an order of magnitude faster than the existing approaches for the same level of accuracy.</description><identifier>ISSN: 1816-093X</identifier><identifier>EISSN: 1816-0948</identifier><language>eng</language><publisher>Hong Kong: International Association of Engineers</publisher><subject>Algorithms ; Comparative studies ; Computer vision ; Euler-Lagrange equation ; Geodesy ; Geometry ; Iterative methods ; Metric space ; Newton methods ; Numerical methods ; Optimization ; Shortest-path problems</subject><ispartof>Engineering letters, 2023-02, Vol.31 (1), p.338</ispartof><rights>Copyright International Association of Engineers Feb 23, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Liu, Ruyuan</creatorcontrib><creatorcontrib>Xiao, Fengyang</creatorcontrib><creatorcontrib>Meng, Wenlong</creatorcontrib><title>Efficiently Computing Shortest Paths on Curved Surfaces with Newton's Method</title><title>Engineering letters</title><description>Geodesics are important in the study of metric geometry. Although Euler–Lagrange equations are used to formulate geodesics, closed-form solutions are not available except in a few cases. Therefore, researchers have to seek for numerical methods instead of finding geodesics in computer vision and graphics. In this paper, we first formulate the computation of geodesics on a parametric surface into an optimizationdriven problem and then propose an efficient solution to the optimization problem with a second-order Newton iteration method. The comparative study shows that our algorithm is an order of magnitude faster than the existing approaches for the same level of accuracy.</description><subject>Algorithms</subject><subject>Comparative studies</subject><subject>Computer vision</subject><subject>Euler-Lagrange equation</subject><subject>Geodesy</subject><subject>Geometry</subject><subject>Iterative methods</subject><subject>Metric space</subject><subject>Newton methods</subject><subject>Numerical methods</subject><subject>Optimization</subject><subject>Shortest-path problems</subject><issn>1816-093X</issn><issn>1816-0948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9jl1LwzAYhYMoOLb9h4AXXhXS5vtSyvyAToXtYncjTd_YyGxqkjr89xYUr865ec5zLtCiVKUoiGbq8r_TwzVap-RbwpikXBO-QM3GOW89DPn0jevwMU7ZD29414eYIWX8anKfcBhwPcUv6PBuis5YSPjsc4-f4ZzDcJvwFnIfuhW6cuaUYP2XS7S_3-zrx6J5eXiq75pi1CoXGiyUuqrAaGsEF6CZbW3LFLMKOHRCg1NOCKqlcMQS0kpFjGTazaCkJV2im9_ZMYbPaX55fA9THGbjsZJKMS55JekP5BRMKg</recordid><startdate>20230223</startdate><enddate>20230223</enddate><creator>Liu, Ruyuan</creator><creator>Xiao, Fengyang</creator><creator>Meng, Wenlong</creator><general>International Association of Engineers</general><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230223</creationdate><title>Efficiently Computing Shortest Paths on Curved Surfaces with Newton's Method</title><author>Liu, Ruyuan ; Xiao, Fengyang ; Meng, Wenlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p98t-9ece1922ea9ca656e94cbcb484c8e5ed69ef8f663976f0c00b780a749fece7313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Comparative studies</topic><topic>Computer vision</topic><topic>Euler-Lagrange equation</topic><topic>Geodesy</topic><topic>Geometry</topic><topic>Iterative methods</topic><topic>Metric space</topic><topic>Newton methods</topic><topic>Numerical methods</topic><topic>Optimization</topic><topic>Shortest-path problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Ruyuan</creatorcontrib><creatorcontrib>Xiao, Fengyang</creatorcontrib><creatorcontrib>Meng, Wenlong</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Engineering letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Ruyuan</au><au>Xiao, Fengyang</au><au>Meng, Wenlong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficiently Computing Shortest Paths on Curved Surfaces with Newton's Method</atitle><jtitle>Engineering letters</jtitle><date>2023-02-23</date><risdate>2023</risdate><volume>31</volume><issue>1</issue><spage>338</spage><pages>338-</pages><issn>1816-093X</issn><eissn>1816-0948</eissn><abstract>Geodesics are important in the study of metric geometry. Although Euler–Lagrange equations are used to formulate geodesics, closed-form solutions are not available except in a few cases. Therefore, researchers have to seek for numerical methods instead of finding geodesics in computer vision and graphics. In this paper, we first formulate the computation of geodesics on a parametric surface into an optimizationdriven problem and then propose an efficient solution to the optimization problem with a second-order Newton iteration method. The comparative study shows that our algorithm is an order of magnitude faster than the existing approaches for the same level of accuracy.</abstract><cop>Hong Kong</cop><pub>International Association of Engineers</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1816-093X |
ispartof | Engineering letters, 2023-02, Vol.31 (1), p.338 |
issn | 1816-093X 1816-0948 |
language | eng |
recordid | cdi_proquest_journals_2788457527 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Comparative studies Computer vision Euler-Lagrange equation Geodesy Geometry Iterative methods Metric space Newton methods Numerical methods Optimization Shortest-path problems |
title | Efficiently Computing Shortest Paths on Curved Surfaces with Newton's Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A38%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficiently%20Computing%20Shortest%20Paths%20on%20Curved%20Surfaces%20with%20Newton's%20Method&rft.jtitle=Engineering%20letters&rft.au=Liu,%20Ruyuan&rft.date=2023-02-23&rft.volume=31&rft.issue=1&rft.spage=338&rft.pages=338-&rft.issn=1816-093X&rft.eissn=1816-0948&rft_id=info:doi/&rft_dat=%3Cproquest%3E2788457527%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2788457527&rft_id=info:pmid/&rfr_iscdi=true |