Generalized Pareto distribution applied to the analysis of maximum rainfall events in Uruguaiana, RS, Brazil
The rainfall monitoring allows us to understand the hydrological cycle that not only influences the ecological and environmental dynamics, but also affects the economic and social activities. These sectors are greatly affected when rainfall occurs in amounts greater than the average, called extreme...
Gespeichert in:
Veröffentlicht in: | SN applied sciences 2020-09, Vol.2 (9), p.1479, Article 1479 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 1479 |
container_title | SN applied sciences |
container_volume | 2 |
creator | Martins, Amanda Larissa Alves Liska, Gilberto Rodrigues Beijo, Luiz Alberto Menezes, Fortunato Silva de Cirillo, Marcelo Ângelo |
description | The rainfall monitoring allows us to understand the hydrological cycle that not only influences the ecological and environmental dynamics, but also affects the economic and social activities. These sectors are greatly affected when rainfall occurs in amounts greater than the average, called extreme event; moreover, statistical methodologies based on the mean occurrence of these events are inadequate to analyze these extreme events. The Extreme Values Theory provides adequate theoretical models for this type of event; therefore, the Generalized Pareto Distribution (Henceforth GPD) is used to analyze the extreme events that exceed a threshold. The present work has applied both the GPD and its nested version, the Exponential Distribution, in monthly rainfall data from the city of Uruguaiana, in the state of Rio Grande do Sul in Brazil, which calculates the return levels and probabilities for some events of practical interest. To support the results, the goodness of fit criteria is used, and a Monte Carlo simulation procedure is proposed to detect the true probability distribution in each month analyzed. The results show that the GPD and Exponential Distribution fits to the data in all months. Through the simulation study, we perceive that the GPD is more suitable in the months of September and November. However, in January, March, April, and August the, Exponential Distribution is more appropriate, and in the other months, we can use either one. |
doi_str_mv | 10.1007/s42452-020-03199-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2788447160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2788447160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-b92640ae0943a9948e063654cae3d8d7f9e3d6a249d14e7b8ca05f7270218d603</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOOa-gE8BX1e9-dMmedShUxgo6p5D1qYzo2tr0orbpzeuom8-ncu9v3O4HITOCVwSAHEVOOUpTYBCAowolcgjNKIpZQlTghz_zhk7RZMQNgBAhWJcshGq5ra23lRubwv8ZLztGly40Hm36jvX1Ni0beXiLe67N4tNbapdcAE3Jd6aT7ftt9gbV5emqrD9sHUXsKvx0vfr3rhIT_HzyxTfeLN31Rk6iVywkx8do-Xd7evsPlk8zh9m14sk51R1yUrRjIOxoDgzSnFpIWNZynNjWSELUaqomaFcFYRbsZK5gbQUVAAlssiAjdHFkNv65r23odObpvfx86CpkJJzQQ4UHajcNyF4W-rWu63xO01Afxerh2J1LFYfitUymthgChGu19b_Rf_j-gIXd3tW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2788447160</pqid></control><display><type>article</type><title>Generalized Pareto distribution applied to the analysis of maximum rainfall events in Uruguaiana, RS, Brazil</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Martins, Amanda Larissa Alves ; Liska, Gilberto Rodrigues ; Beijo, Luiz Alberto ; Menezes, Fortunato Silva de ; Cirillo, Marcelo Ângelo</creator><creatorcontrib>Martins, Amanda Larissa Alves ; Liska, Gilberto Rodrigues ; Beijo, Luiz Alberto ; Menezes, Fortunato Silva de ; Cirillo, Marcelo Ângelo</creatorcontrib><description>The rainfall monitoring allows us to understand the hydrological cycle that not only influences the ecological and environmental dynamics, but also affects the economic and social activities. These sectors are greatly affected when rainfall occurs in amounts greater than the average, called extreme event; moreover, statistical methodologies based on the mean occurrence of these events are inadequate to analyze these extreme events. The Extreme Values Theory provides adequate theoretical models for this type of event; therefore, the Generalized Pareto Distribution (Henceforth GPD) is used to analyze the extreme events that exceed a threshold. The present work has applied both the GPD and its nested version, the Exponential Distribution, in monthly rainfall data from the city of Uruguaiana, in the state of Rio Grande do Sul in Brazil, which calculates the return levels and probabilities for some events of practical interest. To support the results, the goodness of fit criteria is used, and a Monte Carlo simulation procedure is proposed to detect the true probability distribution in each month analyzed. The results show that the GPD and Exponential Distribution fits to the data in all months. Through the simulation study, we perceive that the GPD is more suitable in the months of September and November. However, in January, March, April, and August the, Exponential Distribution is more appropriate, and in the other months, we can use either one.</description><identifier>ISSN: 2523-3963</identifier><identifier>EISSN: 2523-3971</identifier><identifier>DOI: 10.1007/s42452-020-03199-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>2. Earth and Environmental Sciences (general) ; Applied and Technical Physics ; Chemistry/Food Science ; Confidence intervals ; Earth Sciences ; Ecological effects ; Engineering ; Environment ; Estimates ; Extreme values ; Goodness of fit ; Hydrologic cycle ; Hydrologic data ; Hydrology ; Hypotheses ; Hypothesis testing ; Materials Science ; Maximum likelihood method ; Monte Carlo simulation ; Parameter estimation ; Precipitation ; Probability ; Probability distribution ; Probability distribution functions ; Rain ; Rainfall ; Research Article ; Statistical analysis ; Statistical methods</subject><ispartof>SN applied sciences, 2020-09, Vol.2 (9), p.1479, Article 1479</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Springer Nature Switzerland AG 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-b92640ae0943a9948e063654cae3d8d7f9e3d6a249d14e7b8ca05f7270218d603</citedby><cites>FETCH-LOGICAL-c429t-b92640ae0943a9948e063654cae3d8d7f9e3d6a249d14e7b8ca05f7270218d603</cites><orcidid>0000-0002-5108-377X ; 0000-0002-3286-5602 ; 0000-0001-8945-2772 ; 0000-0003-2026-6802</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Martins, Amanda Larissa Alves</creatorcontrib><creatorcontrib>Liska, Gilberto Rodrigues</creatorcontrib><creatorcontrib>Beijo, Luiz Alberto</creatorcontrib><creatorcontrib>Menezes, Fortunato Silva de</creatorcontrib><creatorcontrib>Cirillo, Marcelo Ângelo</creatorcontrib><title>Generalized Pareto distribution applied to the analysis of maximum rainfall events in Uruguaiana, RS, Brazil</title><title>SN applied sciences</title><addtitle>SN Appl. Sci</addtitle><description>The rainfall monitoring allows us to understand the hydrological cycle that not only influences the ecological and environmental dynamics, but also affects the economic and social activities. These sectors are greatly affected when rainfall occurs in amounts greater than the average, called extreme event; moreover, statistical methodologies based on the mean occurrence of these events are inadequate to analyze these extreme events. The Extreme Values Theory provides adequate theoretical models for this type of event; therefore, the Generalized Pareto Distribution (Henceforth GPD) is used to analyze the extreme events that exceed a threshold. The present work has applied both the GPD and its nested version, the Exponential Distribution, in monthly rainfall data from the city of Uruguaiana, in the state of Rio Grande do Sul in Brazil, which calculates the return levels and probabilities for some events of practical interest. To support the results, the goodness of fit criteria is used, and a Monte Carlo simulation procedure is proposed to detect the true probability distribution in each month analyzed. The results show that the GPD and Exponential Distribution fits to the data in all months. Through the simulation study, we perceive that the GPD is more suitable in the months of September and November. However, in January, March, April, and August the, Exponential Distribution is more appropriate, and in the other months, we can use either one.</description><subject>2. Earth and Environmental Sciences (general)</subject><subject>Applied and Technical Physics</subject><subject>Chemistry/Food Science</subject><subject>Confidence intervals</subject><subject>Earth Sciences</subject><subject>Ecological effects</subject><subject>Engineering</subject><subject>Environment</subject><subject>Estimates</subject><subject>Extreme values</subject><subject>Goodness of fit</subject><subject>Hydrologic cycle</subject><subject>Hydrologic data</subject><subject>Hydrology</subject><subject>Hypotheses</subject><subject>Hypothesis testing</subject><subject>Materials Science</subject><subject>Maximum likelihood method</subject><subject>Monte Carlo simulation</subject><subject>Parameter estimation</subject><subject>Precipitation</subject><subject>Probability</subject><subject>Probability distribution</subject><subject>Probability distribution functions</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Research Article</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><issn>2523-3963</issn><issn>2523-3971</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kF9LwzAUxYMoOOa-gE8BX1e9-dMmedShUxgo6p5D1qYzo2tr0orbpzeuom8-ncu9v3O4HITOCVwSAHEVOOUpTYBCAowolcgjNKIpZQlTghz_zhk7RZMQNgBAhWJcshGq5ra23lRubwv8ZLztGly40Hm36jvX1Ni0beXiLe67N4tNbapdcAE3Jd6aT7ftt9gbV5emqrD9sHUXsKvx0vfr3rhIT_HzyxTfeLN31Rk6iVywkx8do-Xd7evsPlk8zh9m14sk51R1yUrRjIOxoDgzSnFpIWNZynNjWSELUaqomaFcFYRbsZK5gbQUVAAlssiAjdHFkNv65r23odObpvfx86CpkJJzQQ4UHajcNyF4W-rWu63xO01Afxerh2J1LFYfitUymthgChGu19b_Rf_j-gIXd3tW</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Martins, Amanda Larissa Alves</creator><creator>Liska, Gilberto Rodrigues</creator><creator>Beijo, Luiz Alberto</creator><creator>Menezes, Fortunato Silva de</creator><creator>Cirillo, Marcelo Ângelo</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5108-377X</orcidid><orcidid>https://orcid.org/0000-0002-3286-5602</orcidid><orcidid>https://orcid.org/0000-0001-8945-2772</orcidid><orcidid>https://orcid.org/0000-0003-2026-6802</orcidid></search><sort><creationdate>20200901</creationdate><title>Generalized Pareto distribution applied to the analysis of maximum rainfall events in Uruguaiana, RS, Brazil</title><author>Martins, Amanda Larissa Alves ; Liska, Gilberto Rodrigues ; Beijo, Luiz Alberto ; Menezes, Fortunato Silva de ; Cirillo, Marcelo Ângelo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-b92640ae0943a9948e063654cae3d8d7f9e3d6a249d14e7b8ca05f7270218d603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>2. Earth and Environmental Sciences (general)</topic><topic>Applied and Technical Physics</topic><topic>Chemistry/Food Science</topic><topic>Confidence intervals</topic><topic>Earth Sciences</topic><topic>Ecological effects</topic><topic>Engineering</topic><topic>Environment</topic><topic>Estimates</topic><topic>Extreme values</topic><topic>Goodness of fit</topic><topic>Hydrologic cycle</topic><topic>Hydrologic data</topic><topic>Hydrology</topic><topic>Hypotheses</topic><topic>Hypothesis testing</topic><topic>Materials Science</topic><topic>Maximum likelihood method</topic><topic>Monte Carlo simulation</topic><topic>Parameter estimation</topic><topic>Precipitation</topic><topic>Probability</topic><topic>Probability distribution</topic><topic>Probability distribution functions</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Research Article</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martins, Amanda Larissa Alves</creatorcontrib><creatorcontrib>Liska, Gilberto Rodrigues</creatorcontrib><creatorcontrib>Beijo, Luiz Alberto</creatorcontrib><creatorcontrib>Menezes, Fortunato Silva de</creatorcontrib><creatorcontrib>Cirillo, Marcelo Ângelo</creatorcontrib><collection>CrossRef</collection><jtitle>SN applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martins, Amanda Larissa Alves</au><au>Liska, Gilberto Rodrigues</au><au>Beijo, Luiz Alberto</au><au>Menezes, Fortunato Silva de</au><au>Cirillo, Marcelo Ângelo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Pareto distribution applied to the analysis of maximum rainfall events in Uruguaiana, RS, Brazil</atitle><jtitle>SN applied sciences</jtitle><stitle>SN Appl. Sci</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>2</volume><issue>9</issue><spage>1479</spage><pages>1479-</pages><artnum>1479</artnum><issn>2523-3963</issn><eissn>2523-3971</eissn><abstract>The rainfall monitoring allows us to understand the hydrological cycle that not only influences the ecological and environmental dynamics, but also affects the economic and social activities. These sectors are greatly affected when rainfall occurs in amounts greater than the average, called extreme event; moreover, statistical methodologies based on the mean occurrence of these events are inadequate to analyze these extreme events. The Extreme Values Theory provides adequate theoretical models for this type of event; therefore, the Generalized Pareto Distribution (Henceforth GPD) is used to analyze the extreme events that exceed a threshold. The present work has applied both the GPD and its nested version, the Exponential Distribution, in monthly rainfall data from the city of Uruguaiana, in the state of Rio Grande do Sul in Brazil, which calculates the return levels and probabilities for some events of practical interest. To support the results, the goodness of fit criteria is used, and a Monte Carlo simulation procedure is proposed to detect the true probability distribution in each month analyzed. The results show that the GPD and Exponential Distribution fits to the data in all months. Through the simulation study, we perceive that the GPD is more suitable in the months of September and November. However, in January, March, April, and August the, Exponential Distribution is more appropriate, and in the other months, we can use either one.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s42452-020-03199-8</doi><orcidid>https://orcid.org/0000-0002-5108-377X</orcidid><orcidid>https://orcid.org/0000-0002-3286-5602</orcidid><orcidid>https://orcid.org/0000-0001-8945-2772</orcidid><orcidid>https://orcid.org/0000-0003-2026-6802</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2523-3963 |
ispartof | SN applied sciences, 2020-09, Vol.2 (9), p.1479, Article 1479 |
issn | 2523-3963 2523-3971 |
language | eng |
recordid | cdi_proquest_journals_2788447160 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | 2. Earth and Environmental Sciences (general) Applied and Technical Physics Chemistry/Food Science Confidence intervals Earth Sciences Ecological effects Engineering Environment Estimates Extreme values Goodness of fit Hydrologic cycle Hydrologic data Hydrology Hypotheses Hypothesis testing Materials Science Maximum likelihood method Monte Carlo simulation Parameter estimation Precipitation Probability Probability distribution Probability distribution functions Rain Rainfall Research Article Statistical analysis Statistical methods |
title | Generalized Pareto distribution applied to the analysis of maximum rainfall events in Uruguaiana, RS, Brazil |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A27%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Pareto%20distribution%20applied%20to%20the%20analysis%20of%20maximum%20rainfall%20events%20in%20Uruguaiana,%20RS,%20Brazil&rft.jtitle=SN%20applied%20sciences&rft.au=Martins,%20Amanda%20Larissa%20Alves&rft.date=2020-09-01&rft.volume=2&rft.issue=9&rft.spage=1479&rft.pages=1479-&rft.artnum=1479&rft.issn=2523-3963&rft.eissn=2523-3971&rft_id=info:doi/10.1007/s42452-020-03199-8&rft_dat=%3Cproquest_cross%3E2788447160%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2788447160&rft_id=info:pmid/&rfr_iscdi=true |