A Review on the optic disc and optic cup segmentation and classification approaches over retinal fundus images for detection of glaucoma

Glaucoma is one of the leading severe retinal disease which damages the optic nerve head on the retinal part of the eye irreversibly. Once the person is diagnosed with glaucoma, it cannot be treated entirely, but it can be controlled. If glaucoma is not diagnosed in time, it will lead to vision loss...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SN applied sciences 2020-09, Vol.2 (9), p.1476, Article 1476
Hauptverfasser: Veena, H N, Muruganandham, A, Kumaran, T Senthil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 1476
container_title SN applied sciences
container_volume 2
creator Veena, H N
Muruganandham, A
Kumaran, T Senthil
description Glaucoma is one of the leading severe retinal disease which damages the optic nerve head on the retinal part of the eye irreversibly. Once the person is diagnosed with glaucoma, it cannot be treated entirely, but it can be controlled. If glaucoma is not diagnosed in time, it will lead to vision loss by damaging the Optic Nerve Head. The glaucoma detection is performed based on the optic disc and optic cup parameters on the retinal part of the eye. In the existing system, many image processing and machine learning techniques used for the segmentation and classification of optic disc and optic cup. To improve the precision of diagnosis, the existing techniques used need an improvement. This article helps readers with more information about the existing methods applied for the diagnosis of glaucoma, it also lists the research gaps and technical challenges to improve the accuracy of segmentation and classification methods.
doi_str_mv 10.1007/s42452-020-03221-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2788446146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2788446146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-f73e5ac19b20f828cea3a520b0c81b918b5827b57817577c0884737f7bcfbdce3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOOb-gFcBr6v5aJvscgy_YCCIXoc0Pek6uqYm7cT9An-22Tr0zqvz9byHc16Erim5pYSIu5CyNGMJYSQhnDGa7M_QhGWMJ3wu6PlvnvNLNAthQwhhYs5TySfoe4FfYVfDJ3Yt7teAXdfXBpd1MFi35ak0Q4cDVFtoe93XkTyMTKNDqG1tTq2u806bNQTsduCxh75udYPt0JZDwPVWV3Fknccl9GCOGmdx1ejBuK2-QhdWNwFmpzhF7w_3b8unZPXy-LxcrBLDc94nVnDItKHzghErmTSguc4YKYiRtJhTWWSSiSITkopMCEOkTAUXVhTGFqUBPkU349547ccAoVcbN_h4aFBMRDjNaZpHio2U8S4ED1Z1Pn7gvxQl6mC6Gk1X0XR1NF3to4iPohDhtgL_t_of1Q9waodC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2788446146</pqid></control><display><type>article</type><title>A Review on the optic disc and optic cup segmentation and classification approaches over retinal fundus images for detection of glaucoma</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Veena, H N ; Muruganandham, A ; Kumaran, T Senthil</creator><creatorcontrib>Veena, H N ; Muruganandham, A ; Kumaran, T Senthil</creatorcontrib><description>Glaucoma is one of the leading severe retinal disease which damages the optic nerve head on the retinal part of the eye irreversibly. Once the person is diagnosed with glaucoma, it cannot be treated entirely, but it can be controlled. If glaucoma is not diagnosed in time, it will lead to vision loss by damaging the Optic Nerve Head. The glaucoma detection is performed based on the optic disc and optic cup parameters on the retinal part of the eye. In the existing system, many image processing and machine learning techniques used for the segmentation and classification of optic disc and optic cup. To improve the precision of diagnosis, the existing techniques used need an improvement. This article helps readers with more information about the existing methods applied for the diagnosis of glaucoma, it also lists the research gaps and technical challenges to improve the accuracy of segmentation and classification methods.</description><identifier>ISSN: 2523-3963</identifier><identifier>EISSN: 2523-3971</identifier><identifier>DOI: 10.1007/s42452-020-03221-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Alliances ; Applied and Technical Physics ; Business metrics ; Chemistry/Food Science ; Classification ; Cornea ; Deep learning ; Diabetic retinopathy ; Diagnosis ; Earth Sciences ; Engineering ; Engineering: Digital Image Processing ; Environment ; Eye ; Eye (anatomy) ; Eye diseases ; Glaucoma ; Image processing ; Image segmentation ; Iris ; Machine learning ; Materials Science ; Measurement techniques ; Medical imaging ; Medical research ; Nerves ; Ophthalmology ; Optic nerve ; Retina ; Review Paper</subject><ispartof>SN applied sciences, 2020-09, Vol.2 (9), p.1476, Article 1476</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Springer Nature Switzerland AG 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-f73e5ac19b20f828cea3a520b0c81b918b5827b57817577c0884737f7bcfbdce3</citedby><cites>FETCH-LOGICAL-c363t-f73e5ac19b20f828cea3a520b0c81b918b5827b57817577c0884737f7bcfbdce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Veena, H N</creatorcontrib><creatorcontrib>Muruganandham, A</creatorcontrib><creatorcontrib>Kumaran, T Senthil</creatorcontrib><title>A Review on the optic disc and optic cup segmentation and classification approaches over retinal fundus images for detection of glaucoma</title><title>SN applied sciences</title><addtitle>SN Appl. Sci</addtitle><description>Glaucoma is one of the leading severe retinal disease which damages the optic nerve head on the retinal part of the eye irreversibly. Once the person is diagnosed with glaucoma, it cannot be treated entirely, but it can be controlled. If glaucoma is not diagnosed in time, it will lead to vision loss by damaging the Optic Nerve Head. The glaucoma detection is performed based on the optic disc and optic cup parameters on the retinal part of the eye. In the existing system, many image processing and machine learning techniques used for the segmentation and classification of optic disc and optic cup. To improve the precision of diagnosis, the existing techniques used need an improvement. This article helps readers with more information about the existing methods applied for the diagnosis of glaucoma, it also lists the research gaps and technical challenges to improve the accuracy of segmentation and classification methods.</description><subject>Alliances</subject><subject>Applied and Technical Physics</subject><subject>Business metrics</subject><subject>Chemistry/Food Science</subject><subject>Classification</subject><subject>Cornea</subject><subject>Deep learning</subject><subject>Diabetic retinopathy</subject><subject>Diagnosis</subject><subject>Earth Sciences</subject><subject>Engineering</subject><subject>Engineering: Digital Image Processing</subject><subject>Environment</subject><subject>Eye</subject><subject>Eye (anatomy)</subject><subject>Eye diseases</subject><subject>Glaucoma</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Iris</subject><subject>Machine learning</subject><subject>Materials Science</subject><subject>Measurement techniques</subject><subject>Medical imaging</subject><subject>Medical research</subject><subject>Nerves</subject><subject>Ophthalmology</subject><subject>Optic nerve</subject><subject>Retina</subject><subject>Review Paper</subject><issn>2523-3963</issn><issn>2523-3971</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOOb-gFcBr6v5aJvscgy_YCCIXoc0Pek6uqYm7cT9An-22Tr0zqvz9byHc16Erim5pYSIu5CyNGMJYSQhnDGa7M_QhGWMJ3wu6PlvnvNLNAthQwhhYs5TySfoe4FfYVfDJ3Yt7teAXdfXBpd1MFi35ak0Q4cDVFtoe93XkTyMTKNDqG1tTq2u806bNQTsduCxh75udYPt0JZDwPVWV3Fknccl9GCOGmdx1ejBuK2-QhdWNwFmpzhF7w_3b8unZPXy-LxcrBLDc94nVnDItKHzghErmTSguc4YKYiRtJhTWWSSiSITkopMCEOkTAUXVhTGFqUBPkU349547ccAoVcbN_h4aFBMRDjNaZpHio2U8S4ED1Z1Pn7gvxQl6mC6Gk1X0XR1NF3to4iPohDhtgL_t_of1Q9waodC</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Veena, H N</creator><creator>Muruganandham, A</creator><creator>Kumaran, T Senthil</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200901</creationdate><title>A Review on the optic disc and optic cup segmentation and classification approaches over retinal fundus images for detection of glaucoma</title><author>Veena, H N ; Muruganandham, A ; Kumaran, T Senthil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-f73e5ac19b20f828cea3a520b0c81b918b5827b57817577c0884737f7bcfbdce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alliances</topic><topic>Applied and Technical Physics</topic><topic>Business metrics</topic><topic>Chemistry/Food Science</topic><topic>Classification</topic><topic>Cornea</topic><topic>Deep learning</topic><topic>Diabetic retinopathy</topic><topic>Diagnosis</topic><topic>Earth Sciences</topic><topic>Engineering</topic><topic>Engineering: Digital Image Processing</topic><topic>Environment</topic><topic>Eye</topic><topic>Eye (anatomy)</topic><topic>Eye diseases</topic><topic>Glaucoma</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Iris</topic><topic>Machine learning</topic><topic>Materials Science</topic><topic>Measurement techniques</topic><topic>Medical imaging</topic><topic>Medical research</topic><topic>Nerves</topic><topic>Ophthalmology</topic><topic>Optic nerve</topic><topic>Retina</topic><topic>Review Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Veena, H N</creatorcontrib><creatorcontrib>Muruganandham, A</creatorcontrib><creatorcontrib>Kumaran, T Senthil</creatorcontrib><collection>CrossRef</collection><jtitle>SN applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Veena, H N</au><au>Muruganandham, A</au><au>Kumaran, T Senthil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Review on the optic disc and optic cup segmentation and classification approaches over retinal fundus images for detection of glaucoma</atitle><jtitle>SN applied sciences</jtitle><stitle>SN Appl. Sci</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>2</volume><issue>9</issue><spage>1476</spage><pages>1476-</pages><artnum>1476</artnum><issn>2523-3963</issn><eissn>2523-3971</eissn><abstract>Glaucoma is one of the leading severe retinal disease which damages the optic nerve head on the retinal part of the eye irreversibly. Once the person is diagnosed with glaucoma, it cannot be treated entirely, but it can be controlled. If glaucoma is not diagnosed in time, it will lead to vision loss by damaging the Optic Nerve Head. The glaucoma detection is performed based on the optic disc and optic cup parameters on the retinal part of the eye. In the existing system, many image processing and machine learning techniques used for the segmentation and classification of optic disc and optic cup. To improve the precision of diagnosis, the existing techniques used need an improvement. This article helps readers with more information about the existing methods applied for the diagnosis of glaucoma, it also lists the research gaps and technical challenges to improve the accuracy of segmentation and classification methods.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s42452-020-03221-z</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2523-3963
ispartof SN applied sciences, 2020-09, Vol.2 (9), p.1476, Article 1476
issn 2523-3963
2523-3971
language eng
recordid cdi_proquest_journals_2788446146
source EZB-FREE-00999 freely available EZB journals
subjects Alliances
Applied and Technical Physics
Business metrics
Chemistry/Food Science
Classification
Cornea
Deep learning
Diabetic retinopathy
Diagnosis
Earth Sciences
Engineering
Engineering: Digital Image Processing
Environment
Eye
Eye (anatomy)
Eye diseases
Glaucoma
Image processing
Image segmentation
Iris
Machine learning
Materials Science
Measurement techniques
Medical imaging
Medical research
Nerves
Ophthalmology
Optic nerve
Retina
Review Paper
title A Review on the optic disc and optic cup segmentation and classification approaches over retinal fundus images for detection of glaucoma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A26%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Review%20on%20the%20optic%20disc%20and%20optic%20cup%20segmentation%20and%20classification%20approaches%20over%20retinal%20fundus%20images%20for%20detection%20of%20glaucoma&rft.jtitle=SN%20applied%20sciences&rft.au=Veena,%20H%20N&rft.date=2020-09-01&rft.volume=2&rft.issue=9&rft.spage=1476&rft.pages=1476-&rft.artnum=1476&rft.issn=2523-3963&rft.eissn=2523-3971&rft_id=info:doi/10.1007/s42452-020-03221-z&rft_dat=%3Cproquest_cross%3E2788446146%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2788446146&rft_id=info:pmid/&rfr_iscdi=true