Non-contact electrochemical evaluation of biofilms
Here, we demonstrate a non-contact technique for electrochemical evaluation of biofilms on surfaces in relation to corrosion. Electrochemical impedance spectrometry was employed, incorporating flat patterned electrodes positioned over the surfaces of aluminum and glass with and without biofilms. Sig...
Gespeichert in:
Veröffentlicht in: | SN applied sciences 2020-03, Vol.2 (3), p.389, Article 389 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 389 |
container_title | SN applied sciences |
container_volume | 2 |
creator | Turick, Charles E. Colon-Mercado, Hector Bagwell, Christopher E. Greenway, Scott D. Amoroso, Jake W. |
description | Here, we demonstrate a non-contact technique for electrochemical evaluation of biofilms on surfaces in relation to corrosion. Electrochemical impedance spectrometry was employed, incorporating flat patterned electrodes positioned over the surfaces of aluminum and glass with and without biofilms. Signal communication from the working electrode to the counter electrode followed electric field lines passing tangentially through the biofilms. Electrochemical impedance parameters that were evaluated included complex impedance, phase angle, imaginary (out of phase) conductivity and Cole–Cole plots with a corresponding equivalent circuit. Changes in the impedance properties due to the presence of biofilms were monitored and correlated through microbiological, chemical and electrochemical assays. Impedance parameters associated with microbial activity correlated with biofilms on aluminum and glass surfaces. This technical approach provides impedance information about the biofilm without the signal traveling through the underlying conductive media or disrupting the biofilm. In this way, biological contributions to surface fouling can be evaluated with minimal contribution from the inorganic surface under the biofilm. In addition, this technique can be used to monitor biofilms on electrochemically inert surfaces as well as electrically conductive surfaces.
Graphic abstract |
doi_str_mv | 10.1007/s42452-020-2081-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2788432810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2788432810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-756c58c99201eef2b541ff9365376e92197018baa2fd6e188aaffe407754b4e03</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoOIzzA9wVXEdfXpImWcrgFwy60XVIY6Id2mZMOoL_3ikVXbl6d3HPfXAIOWdwyQDUVREoJFJAoAiaUTgiC5TIKTeKHf_mmp-SVSlbAEBluNB8QfAxDdSnYXR-rEIX_JiTfw99611XhU_X7d3YpqFKsWraFNuuL2fkJLquhNXPXZKX25vn9T3dPN09rK831HNpRqpk7aX2xiCwECI2UrAYDa8lV3UwyIwCphvnML7WgWntXIxBgFJSNCIAX5KLeXeX08c-lNFu0z4Ph5cWldaCo2ZTi80tn1MpOUS7y23v8pdlYCc7drZjD3bsZMdODM5MOXSHt5D_lv-HvgHKnWW7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2788432810</pqid></control><display><type>article</type><title>Non-contact electrochemical evaluation of biofilms</title><source>EZB Electronic Journals Library</source><creator>Turick, Charles E. ; Colon-Mercado, Hector ; Bagwell, Christopher E. ; Greenway, Scott D. ; Amoroso, Jake W.</creator><creatorcontrib>Turick, Charles E. ; Colon-Mercado, Hector ; Bagwell, Christopher E. ; Greenway, Scott D. ; Amoroso, Jake W.</creatorcontrib><description>Here, we demonstrate a non-contact technique for electrochemical evaluation of biofilms on surfaces in relation to corrosion. Electrochemical impedance spectrometry was employed, incorporating flat patterned electrodes positioned over the surfaces of aluminum and glass with and without biofilms. Signal communication from the working electrode to the counter electrode followed electric field lines passing tangentially through the biofilms. Electrochemical impedance parameters that were evaluated included complex impedance, phase angle, imaginary (out of phase) conductivity and Cole–Cole plots with a corresponding equivalent circuit. Changes in the impedance properties due to the presence of biofilms were monitored and correlated through microbiological, chemical and electrochemical assays. Impedance parameters associated with microbial activity correlated with biofilms on aluminum and glass surfaces. This technical approach provides impedance information about the biofilm without the signal traveling through the underlying conductive media or disrupting the biofilm. In this way, biological contributions to surface fouling can be evaluated with minimal contribution from the inorganic surface under the biofilm. In addition, this technique can be used to monitor biofilms on electrochemically inert surfaces as well as electrically conductive surfaces.
Graphic abstract</description><identifier>ISSN: 2523-3963</identifier><identifier>EISSN: 2523-3971</identifier><identifier>DOI: 10.1007/s42452-020-2081-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Aluminum ; Applied and Technical Physics ; Bacteria ; Biofilms ; Biological activity ; Chemistry/Food Science ; Communication ; Cooling ; Corrosion potential ; Earth Sciences ; Electric contacts ; Electric fields ; Electrochemical analysis ; Electrochemistry ; Electrodes ; Engineering ; Environment ; Equivalent circuits ; Impedance ; Interdisciplinary: Bioelectronics ; Materials Science ; Microbial activity ; Parameters ; Research Article ; Software ; Spectrometry ; Thermal cycling</subject><ispartof>SN applied sciences, 2020-03, Vol.2 (3), p.389, Article 389</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-756c58c99201eef2b541ff9365376e92197018baa2fd6e188aaffe407754b4e03</citedby><cites>FETCH-LOGICAL-c359t-756c58c99201eef2b541ff9365376e92197018baa2fd6e188aaffe407754b4e03</cites><orcidid>0000-0003-0781-5846</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Turick, Charles E.</creatorcontrib><creatorcontrib>Colon-Mercado, Hector</creatorcontrib><creatorcontrib>Bagwell, Christopher E.</creatorcontrib><creatorcontrib>Greenway, Scott D.</creatorcontrib><creatorcontrib>Amoroso, Jake W.</creatorcontrib><title>Non-contact electrochemical evaluation of biofilms</title><title>SN applied sciences</title><addtitle>SN Appl. Sci</addtitle><description>Here, we demonstrate a non-contact technique for electrochemical evaluation of biofilms on surfaces in relation to corrosion. Electrochemical impedance spectrometry was employed, incorporating flat patterned electrodes positioned over the surfaces of aluminum and glass with and without biofilms. Signal communication from the working electrode to the counter electrode followed electric field lines passing tangentially through the biofilms. Electrochemical impedance parameters that were evaluated included complex impedance, phase angle, imaginary (out of phase) conductivity and Cole–Cole plots with a corresponding equivalent circuit. Changes in the impedance properties due to the presence of biofilms were monitored and correlated through microbiological, chemical and electrochemical assays. Impedance parameters associated with microbial activity correlated with biofilms on aluminum and glass surfaces. This technical approach provides impedance information about the biofilm without the signal traveling through the underlying conductive media or disrupting the biofilm. In this way, biological contributions to surface fouling can be evaluated with minimal contribution from the inorganic surface under the biofilm. In addition, this technique can be used to monitor biofilms on electrochemically inert surfaces as well as electrically conductive surfaces.
Graphic abstract</description><subject>Aluminum</subject><subject>Applied and Technical Physics</subject><subject>Bacteria</subject><subject>Biofilms</subject><subject>Biological activity</subject><subject>Chemistry/Food Science</subject><subject>Communication</subject><subject>Cooling</subject><subject>Corrosion potential</subject><subject>Earth Sciences</subject><subject>Electric contacts</subject><subject>Electric fields</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Engineering</subject><subject>Environment</subject><subject>Equivalent circuits</subject><subject>Impedance</subject><subject>Interdisciplinary: Bioelectronics</subject><subject>Materials Science</subject><subject>Microbial activity</subject><subject>Parameters</subject><subject>Research Article</subject><subject>Software</subject><subject>Spectrometry</subject><subject>Thermal cycling</subject><issn>2523-3963</issn><issn>2523-3971</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kE1LxDAURYMoOIzzA9wVXEdfXpImWcrgFwy60XVIY6Id2mZMOoL_3ikVXbl6d3HPfXAIOWdwyQDUVREoJFJAoAiaUTgiC5TIKTeKHf_mmp-SVSlbAEBluNB8QfAxDdSnYXR-rEIX_JiTfw99611XhU_X7d3YpqFKsWraFNuuL2fkJLquhNXPXZKX25vn9T3dPN09rK831HNpRqpk7aX2xiCwECI2UrAYDa8lV3UwyIwCphvnML7WgWntXIxBgFJSNCIAX5KLeXeX08c-lNFu0z4Ph5cWldaCo2ZTi80tn1MpOUS7y23v8pdlYCc7drZjD3bsZMdODM5MOXSHt5D_lv-HvgHKnWW7</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Turick, Charles E.</creator><creator>Colon-Mercado, Hector</creator><creator>Bagwell, Christopher E.</creator><creator>Greenway, Scott D.</creator><creator>Amoroso, Jake W.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0781-5846</orcidid></search><sort><creationdate>20200301</creationdate><title>Non-contact electrochemical evaluation of biofilms</title><author>Turick, Charles E. ; Colon-Mercado, Hector ; Bagwell, Christopher E. ; Greenway, Scott D. ; Amoroso, Jake W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-756c58c99201eef2b541ff9365376e92197018baa2fd6e188aaffe407754b4e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum</topic><topic>Applied and Technical Physics</topic><topic>Bacteria</topic><topic>Biofilms</topic><topic>Biological activity</topic><topic>Chemistry/Food Science</topic><topic>Communication</topic><topic>Cooling</topic><topic>Corrosion potential</topic><topic>Earth Sciences</topic><topic>Electric contacts</topic><topic>Electric fields</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Engineering</topic><topic>Environment</topic><topic>Equivalent circuits</topic><topic>Impedance</topic><topic>Interdisciplinary: Bioelectronics</topic><topic>Materials Science</topic><topic>Microbial activity</topic><topic>Parameters</topic><topic>Research Article</topic><topic>Software</topic><topic>Spectrometry</topic><topic>Thermal cycling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turick, Charles E.</creatorcontrib><creatorcontrib>Colon-Mercado, Hector</creatorcontrib><creatorcontrib>Bagwell, Christopher E.</creatorcontrib><creatorcontrib>Greenway, Scott D.</creatorcontrib><creatorcontrib>Amoroso, Jake W.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>SN applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turick, Charles E.</au><au>Colon-Mercado, Hector</au><au>Bagwell, Christopher E.</au><au>Greenway, Scott D.</au><au>Amoroso, Jake W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-contact electrochemical evaluation of biofilms</atitle><jtitle>SN applied sciences</jtitle><stitle>SN Appl. Sci</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>2</volume><issue>3</issue><spage>389</spage><pages>389-</pages><artnum>389</artnum><issn>2523-3963</issn><eissn>2523-3971</eissn><abstract>Here, we demonstrate a non-contact technique for electrochemical evaluation of biofilms on surfaces in relation to corrosion. Electrochemical impedance spectrometry was employed, incorporating flat patterned electrodes positioned over the surfaces of aluminum and glass with and without biofilms. Signal communication from the working electrode to the counter electrode followed electric field lines passing tangentially through the biofilms. Electrochemical impedance parameters that were evaluated included complex impedance, phase angle, imaginary (out of phase) conductivity and Cole–Cole plots with a corresponding equivalent circuit. Changes in the impedance properties due to the presence of biofilms were monitored and correlated through microbiological, chemical and electrochemical assays. Impedance parameters associated with microbial activity correlated with biofilms on aluminum and glass surfaces. This technical approach provides impedance information about the biofilm without the signal traveling through the underlying conductive media or disrupting the biofilm. In this way, biological contributions to surface fouling can be evaluated with minimal contribution from the inorganic surface under the biofilm. In addition, this technique can be used to monitor biofilms on electrochemically inert surfaces as well as electrically conductive surfaces.
Graphic abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s42452-020-2081-0</doi><orcidid>https://orcid.org/0000-0003-0781-5846</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2523-3963 |
ispartof | SN applied sciences, 2020-03, Vol.2 (3), p.389, Article 389 |
issn | 2523-3963 2523-3971 |
language | eng |
recordid | cdi_proquest_journals_2788432810 |
source | EZB Electronic Journals Library |
subjects | Aluminum Applied and Technical Physics Bacteria Biofilms Biological activity Chemistry/Food Science Communication Cooling Corrosion potential Earth Sciences Electric contacts Electric fields Electrochemical analysis Electrochemistry Electrodes Engineering Environment Equivalent circuits Impedance Interdisciplinary: Bioelectronics Materials Science Microbial activity Parameters Research Article Software Spectrometry Thermal cycling |
title | Non-contact electrochemical evaluation of biofilms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T19%3A00%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-contact%20electrochemical%20evaluation%20of%20biofilms&rft.jtitle=SN%20applied%20sciences&rft.au=Turick,%20Charles%20E.&rft.date=2020-03-01&rft.volume=2&rft.issue=3&rft.spage=389&rft.pages=389-&rft.artnum=389&rft.issn=2523-3963&rft.eissn=2523-3971&rft_id=info:doi/10.1007/s42452-020-2081-0&rft_dat=%3Cproquest_cross%3E2788432810%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2788432810&rft_id=info:pmid/&rfr_iscdi=true |