Non-contact electrochemical evaluation of biofilms

Here, we demonstrate a non-contact technique for electrochemical evaluation of biofilms on surfaces in relation to corrosion. Electrochemical impedance spectrometry was employed, incorporating flat patterned electrodes positioned over the surfaces of aluminum and glass with and without biofilms. Sig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SN applied sciences 2020-03, Vol.2 (3), p.389, Article 389
Hauptverfasser: Turick, Charles E., Colon-Mercado, Hector, Bagwell, Christopher E., Greenway, Scott D., Amoroso, Jake W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 389
container_title SN applied sciences
container_volume 2
creator Turick, Charles E.
Colon-Mercado, Hector
Bagwell, Christopher E.
Greenway, Scott D.
Amoroso, Jake W.
description Here, we demonstrate a non-contact technique for electrochemical evaluation of biofilms on surfaces in relation to corrosion. Electrochemical impedance spectrometry was employed, incorporating flat patterned electrodes positioned over the surfaces of aluminum and glass with and without biofilms. Signal communication from the working electrode to the counter electrode followed electric field lines passing tangentially through the biofilms. Electrochemical impedance parameters that were evaluated included complex impedance, phase angle, imaginary (out of phase) conductivity and Cole–Cole plots with a corresponding equivalent circuit. Changes in the impedance properties due to the presence of biofilms were monitored and correlated through microbiological, chemical and electrochemical assays. Impedance parameters associated with microbial activity correlated with biofilms on aluminum and glass surfaces. This technical approach provides impedance information about the biofilm without the signal traveling through the underlying conductive media or disrupting the biofilm. In this way, biological contributions to surface fouling can be evaluated with minimal contribution from the inorganic surface under the biofilm. In addition, this technique can be used to monitor biofilms on electrochemically inert surfaces as well as electrically conductive surfaces. Graphic abstract
doi_str_mv 10.1007/s42452-020-2081-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2788432810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2788432810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-756c58c99201eef2b541ff9365376e92197018baa2fd6e188aaffe407754b4e03</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoOIzzA9wVXEdfXpImWcrgFwy60XVIY6Id2mZMOoL_3ikVXbl6d3HPfXAIOWdwyQDUVREoJFJAoAiaUTgiC5TIKTeKHf_mmp-SVSlbAEBluNB8QfAxDdSnYXR-rEIX_JiTfw99611XhU_X7d3YpqFKsWraFNuuL2fkJLquhNXPXZKX25vn9T3dPN09rK831HNpRqpk7aX2xiCwECI2UrAYDa8lV3UwyIwCphvnML7WgWntXIxBgFJSNCIAX5KLeXeX08c-lNFu0z4Ph5cWldaCo2ZTi80tn1MpOUS7y23v8pdlYCc7drZjD3bsZMdODM5MOXSHt5D_lv-HvgHKnWW7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2788432810</pqid></control><display><type>article</type><title>Non-contact electrochemical evaluation of biofilms</title><source>EZB Electronic Journals Library</source><creator>Turick, Charles E. ; Colon-Mercado, Hector ; Bagwell, Christopher E. ; Greenway, Scott D. ; Amoroso, Jake W.</creator><creatorcontrib>Turick, Charles E. ; Colon-Mercado, Hector ; Bagwell, Christopher E. ; Greenway, Scott D. ; Amoroso, Jake W.</creatorcontrib><description>Here, we demonstrate a non-contact technique for electrochemical evaluation of biofilms on surfaces in relation to corrosion. Electrochemical impedance spectrometry was employed, incorporating flat patterned electrodes positioned over the surfaces of aluminum and glass with and without biofilms. Signal communication from the working electrode to the counter electrode followed electric field lines passing tangentially through the biofilms. Electrochemical impedance parameters that were evaluated included complex impedance, phase angle, imaginary (out of phase) conductivity and Cole–Cole plots with a corresponding equivalent circuit. Changes in the impedance properties due to the presence of biofilms were monitored and correlated through microbiological, chemical and electrochemical assays. Impedance parameters associated with microbial activity correlated with biofilms on aluminum and glass surfaces. This technical approach provides impedance information about the biofilm without the signal traveling through the underlying conductive media or disrupting the biofilm. In this way, biological contributions to surface fouling can be evaluated with minimal contribution from the inorganic surface under the biofilm. In addition, this technique can be used to monitor biofilms on electrochemically inert surfaces as well as electrically conductive surfaces. Graphic abstract</description><identifier>ISSN: 2523-3963</identifier><identifier>EISSN: 2523-3971</identifier><identifier>DOI: 10.1007/s42452-020-2081-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Aluminum ; Applied and Technical Physics ; Bacteria ; Biofilms ; Biological activity ; Chemistry/Food Science ; Communication ; Cooling ; Corrosion potential ; Earth Sciences ; Electric contacts ; Electric fields ; Electrochemical analysis ; Electrochemistry ; Electrodes ; Engineering ; Environment ; Equivalent circuits ; Impedance ; Interdisciplinary: Bioelectronics ; Materials Science ; Microbial activity ; Parameters ; Research Article ; Software ; Spectrometry ; Thermal cycling</subject><ispartof>SN applied sciences, 2020-03, Vol.2 (3), p.389, Article 389</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-756c58c99201eef2b541ff9365376e92197018baa2fd6e188aaffe407754b4e03</citedby><cites>FETCH-LOGICAL-c359t-756c58c99201eef2b541ff9365376e92197018baa2fd6e188aaffe407754b4e03</cites><orcidid>0000-0003-0781-5846</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Turick, Charles E.</creatorcontrib><creatorcontrib>Colon-Mercado, Hector</creatorcontrib><creatorcontrib>Bagwell, Christopher E.</creatorcontrib><creatorcontrib>Greenway, Scott D.</creatorcontrib><creatorcontrib>Amoroso, Jake W.</creatorcontrib><title>Non-contact electrochemical evaluation of biofilms</title><title>SN applied sciences</title><addtitle>SN Appl. Sci</addtitle><description>Here, we demonstrate a non-contact technique for electrochemical evaluation of biofilms on surfaces in relation to corrosion. Electrochemical impedance spectrometry was employed, incorporating flat patterned electrodes positioned over the surfaces of aluminum and glass with and without biofilms. Signal communication from the working electrode to the counter electrode followed electric field lines passing tangentially through the biofilms. Electrochemical impedance parameters that were evaluated included complex impedance, phase angle, imaginary (out of phase) conductivity and Cole–Cole plots with a corresponding equivalent circuit. Changes in the impedance properties due to the presence of biofilms were monitored and correlated through microbiological, chemical and electrochemical assays. Impedance parameters associated with microbial activity correlated with biofilms on aluminum and glass surfaces. This technical approach provides impedance information about the biofilm without the signal traveling through the underlying conductive media or disrupting the biofilm. In this way, biological contributions to surface fouling can be evaluated with minimal contribution from the inorganic surface under the biofilm. In addition, this technique can be used to monitor biofilms on electrochemically inert surfaces as well as electrically conductive surfaces. Graphic abstract</description><subject>Aluminum</subject><subject>Applied and Technical Physics</subject><subject>Bacteria</subject><subject>Biofilms</subject><subject>Biological activity</subject><subject>Chemistry/Food Science</subject><subject>Communication</subject><subject>Cooling</subject><subject>Corrosion potential</subject><subject>Earth Sciences</subject><subject>Electric contacts</subject><subject>Electric fields</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Engineering</subject><subject>Environment</subject><subject>Equivalent circuits</subject><subject>Impedance</subject><subject>Interdisciplinary: Bioelectronics</subject><subject>Materials Science</subject><subject>Microbial activity</subject><subject>Parameters</subject><subject>Research Article</subject><subject>Software</subject><subject>Spectrometry</subject><subject>Thermal cycling</subject><issn>2523-3963</issn><issn>2523-3971</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kE1LxDAURYMoOIzzA9wVXEdfXpImWcrgFwy60XVIY6Id2mZMOoL_3ikVXbl6d3HPfXAIOWdwyQDUVREoJFJAoAiaUTgiC5TIKTeKHf_mmp-SVSlbAEBluNB8QfAxDdSnYXR-rEIX_JiTfw99611XhU_X7d3YpqFKsWraFNuuL2fkJLquhNXPXZKX25vn9T3dPN09rK831HNpRqpk7aX2xiCwECI2UrAYDa8lV3UwyIwCphvnML7WgWntXIxBgFJSNCIAX5KLeXeX08c-lNFu0z4Ph5cWldaCo2ZTi80tn1MpOUS7y23v8pdlYCc7drZjD3bsZMdODM5MOXSHt5D_lv-HvgHKnWW7</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Turick, Charles E.</creator><creator>Colon-Mercado, Hector</creator><creator>Bagwell, Christopher E.</creator><creator>Greenway, Scott D.</creator><creator>Amoroso, Jake W.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0781-5846</orcidid></search><sort><creationdate>20200301</creationdate><title>Non-contact electrochemical evaluation of biofilms</title><author>Turick, Charles E. ; Colon-Mercado, Hector ; Bagwell, Christopher E. ; Greenway, Scott D. ; Amoroso, Jake W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-756c58c99201eef2b541ff9365376e92197018baa2fd6e188aaffe407754b4e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum</topic><topic>Applied and Technical Physics</topic><topic>Bacteria</topic><topic>Biofilms</topic><topic>Biological activity</topic><topic>Chemistry/Food Science</topic><topic>Communication</topic><topic>Cooling</topic><topic>Corrosion potential</topic><topic>Earth Sciences</topic><topic>Electric contacts</topic><topic>Electric fields</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Engineering</topic><topic>Environment</topic><topic>Equivalent circuits</topic><topic>Impedance</topic><topic>Interdisciplinary: Bioelectronics</topic><topic>Materials Science</topic><topic>Microbial activity</topic><topic>Parameters</topic><topic>Research Article</topic><topic>Software</topic><topic>Spectrometry</topic><topic>Thermal cycling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turick, Charles E.</creatorcontrib><creatorcontrib>Colon-Mercado, Hector</creatorcontrib><creatorcontrib>Bagwell, Christopher E.</creatorcontrib><creatorcontrib>Greenway, Scott D.</creatorcontrib><creatorcontrib>Amoroso, Jake W.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>SN applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turick, Charles E.</au><au>Colon-Mercado, Hector</au><au>Bagwell, Christopher E.</au><au>Greenway, Scott D.</au><au>Amoroso, Jake W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-contact electrochemical evaluation of biofilms</atitle><jtitle>SN applied sciences</jtitle><stitle>SN Appl. Sci</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>2</volume><issue>3</issue><spage>389</spage><pages>389-</pages><artnum>389</artnum><issn>2523-3963</issn><eissn>2523-3971</eissn><abstract>Here, we demonstrate a non-contact technique for electrochemical evaluation of biofilms on surfaces in relation to corrosion. Electrochemical impedance spectrometry was employed, incorporating flat patterned electrodes positioned over the surfaces of aluminum and glass with and without biofilms. Signal communication from the working electrode to the counter electrode followed electric field lines passing tangentially through the biofilms. Electrochemical impedance parameters that were evaluated included complex impedance, phase angle, imaginary (out of phase) conductivity and Cole–Cole plots with a corresponding equivalent circuit. Changes in the impedance properties due to the presence of biofilms were monitored and correlated through microbiological, chemical and electrochemical assays. Impedance parameters associated with microbial activity correlated with biofilms on aluminum and glass surfaces. This technical approach provides impedance information about the biofilm without the signal traveling through the underlying conductive media or disrupting the biofilm. In this way, biological contributions to surface fouling can be evaluated with minimal contribution from the inorganic surface under the biofilm. In addition, this technique can be used to monitor biofilms on electrochemically inert surfaces as well as electrically conductive surfaces. Graphic abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s42452-020-2081-0</doi><orcidid>https://orcid.org/0000-0003-0781-5846</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2523-3963
ispartof SN applied sciences, 2020-03, Vol.2 (3), p.389, Article 389
issn 2523-3963
2523-3971
language eng
recordid cdi_proquest_journals_2788432810
source EZB Electronic Journals Library
subjects Aluminum
Applied and Technical Physics
Bacteria
Biofilms
Biological activity
Chemistry/Food Science
Communication
Cooling
Corrosion potential
Earth Sciences
Electric contacts
Electric fields
Electrochemical analysis
Electrochemistry
Electrodes
Engineering
Environment
Equivalent circuits
Impedance
Interdisciplinary: Bioelectronics
Materials Science
Microbial activity
Parameters
Research Article
Software
Spectrometry
Thermal cycling
title Non-contact electrochemical evaluation of biofilms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T19%3A00%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-contact%20electrochemical%20evaluation%20of%20biofilms&rft.jtitle=SN%20applied%20sciences&rft.au=Turick,%20Charles%20E.&rft.date=2020-03-01&rft.volume=2&rft.issue=3&rft.spage=389&rft.pages=389-&rft.artnum=389&rft.issn=2523-3963&rft.eissn=2523-3971&rft_id=info:doi/10.1007/s42452-020-2081-0&rft_dat=%3Cproquest_cross%3E2788432810%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2788432810&rft_id=info:pmid/&rfr_iscdi=true