Development of Ag/ZnO nanorods and nanoplates at low hydrothermal temperature and time for acetone sensing application: an insight into spillover mechanism

Nanostructure synthesis at low temperature with high purity and yield has a great potential in the present competitive research and development of nanomaterials for varieties of application. Here, we demonstrate the facile hydrothermal synthesis of ZnO nanocomposites at low hydrothermal temperature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SN applied sciences 2019-12, Vol.1 (12), p.1564, Article 1564
Hauptverfasser: Nadargi, Digambar Y., Tamboli, Mohaseen S., Patil, Santosh S., Mulla, Imtiaz S., Suryavanshi, Sharad S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 1564
container_title SN applied sciences
container_volume 1
creator Nadargi, Digambar Y.
Tamboli, Mohaseen S.
Patil, Santosh S.
Mulla, Imtiaz S.
Suryavanshi, Sharad S.
description Nanostructure synthesis at low temperature with high purity and yield has a great potential in the present competitive research and development of nanomaterials for varieties of application. Here, we demonstrate the facile hydrothermal synthesis of ZnO nanocomposites at low hydrothermal temperature and time. With barely 80 °C hydrothermal temperature and 2 h of reaction time, ZnO nanorods were successfully synthesized, while by slightly increasing the reaction time (6 h-and-on), nanoplates of the same material were developed. Both the obtained nanostructures were analyzed using physio-chemical characterizing tools and examined for practical relevance as gas sensing material. The optimized sample was further treated to Ag loading (1–5 mol%) for lowering the operating temperature of the sensor. ZnO sample with 3 mol% Ag loading showed excellent sensitivity of 92.7% for 1000 ppm of acetone concentration with a drop in the operating temperature from 325 °C (Pristine ZnO) to 250 °C (Ag-loaded ZnO). The morphological correlation with reaction time and thereby sensitivity and spillover mechanism are discussed. Graphic abstract
doi_str_mv 10.1007/s42452-019-1573-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2788430970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2788430970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-7d1be69f503b9ddd9bc83ce5b985d374f3bc88da75758b8f7abc651fc393ce373</originalsourceid><addsrcrecordid>eNp1kc1OwzAQhCMEEgj6ANwscQ74J65jbhX_UiUucOFiOfamTZXYwXaLeBZeFrdFcOK0O6tvZg9TFOcEXxKMxVWsaMVpiYksCRespAfFCeWUlUwKcvi7T9lxMYlxhTGmQrKqZifF1y1soPfjAC4h36LZ4urNPSOnnQ_eRqSd3Ymx1wmyTKj3H2j5aYNPSwiD7lGCYYSg0zrADk_dAKj1AWkDyTtAEVzs3ALpcew7o1Pn3XUmUZfPi2XKM3kUx67v_QYCGsAstevicFYctbqPMPmZp8Xr_d3LzWM5f354upnNS8O4TKWwpIGpbDlmjbTWysbUzABvZM0tE1XL8qG2WnDB66ZuhW7MlJPWMJkxJthpcbHPHYN_X0NMauXXweWXioq6rhiWAmeK7CkTfIwBWjWGbtDhUxGstjWofQ0q16C2NSiaPXTviZl1Cwh_yf-bvgH6Mo6a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2788430970</pqid></control><display><type>article</type><title>Development of Ag/ZnO nanorods and nanoplates at low hydrothermal temperature and time for acetone sensing application: an insight into spillover mechanism</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Nadargi, Digambar Y. ; Tamboli, Mohaseen S. ; Patil, Santosh S. ; Mulla, Imtiaz S. ; Suryavanshi, Sharad S.</creator><creatorcontrib>Nadargi, Digambar Y. ; Tamboli, Mohaseen S. ; Patil, Santosh S. ; Mulla, Imtiaz S. ; Suryavanshi, Sharad S.</creatorcontrib><description>Nanostructure synthesis at low temperature with high purity and yield has a great potential in the present competitive research and development of nanomaterials for varieties of application. Here, we demonstrate the facile hydrothermal synthesis of ZnO nanocomposites at low hydrothermal temperature and time. With barely 80 °C hydrothermal temperature and 2 h of reaction time, ZnO nanorods were successfully synthesized, while by slightly increasing the reaction time (6 h-and-on), nanoplates of the same material were developed. Both the obtained nanostructures were analyzed using physio-chemical characterizing tools and examined for practical relevance as gas sensing material. The optimized sample was further treated to Ag loading (1–5 mol%) for lowering the operating temperature of the sensor. ZnO sample with 3 mol% Ag loading showed excellent sensitivity of 92.7% for 1000 ppm of acetone concentration with a drop in the operating temperature from 325 °C (Pristine ZnO) to 250 °C (Ag-loaded ZnO). The morphological correlation with reaction time and thereby sensitivity and spillover mechanism are discussed. Graphic abstract</description><identifier>ISSN: 2523-3963</identifier><identifier>EISSN: 2523-3971</identifier><identifier>DOI: 10.1007/s42452-019-1573-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>4. Materials (general) ; Acetone ; Adsorption ; Applied and Technical Physics ; Chemistry/Food Science ; Earth Sciences ; Engineering ; Environment ; Ethanol ; Gas sensors ; Gases ; Low temperature ; Materials Science ; Metals ; Nanocomposites ; Nanomaterials ; Nanorods ; Nanostructure ; Nanotechnology ; Operating temperature ; R&amp;D ; Reaction time ; Research &amp; development ; Screen printing ; Sensitivity ; Sensors ; Short Communication ; Silver ; Surfactants ; Zinc oxide</subject><ispartof>SN applied sciences, 2019-12, Vol.1 (12), p.1564, Article 1564</ispartof><rights>Springer Nature Switzerland AG 2019</rights><rights>Springer Nature Switzerland AG 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-7d1be69f503b9ddd9bc83ce5b985d374f3bc88da75758b8f7abc651fc393ce373</citedby><cites>FETCH-LOGICAL-c359t-7d1be69f503b9ddd9bc83ce5b985d374f3bc88da75758b8f7abc651fc393ce373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Nadargi, Digambar Y.</creatorcontrib><creatorcontrib>Tamboli, Mohaseen S.</creatorcontrib><creatorcontrib>Patil, Santosh S.</creatorcontrib><creatorcontrib>Mulla, Imtiaz S.</creatorcontrib><creatorcontrib>Suryavanshi, Sharad S.</creatorcontrib><title>Development of Ag/ZnO nanorods and nanoplates at low hydrothermal temperature and time for acetone sensing application: an insight into spillover mechanism</title><title>SN applied sciences</title><addtitle>SN Appl. Sci</addtitle><description>Nanostructure synthesis at low temperature with high purity and yield has a great potential in the present competitive research and development of nanomaterials for varieties of application. Here, we demonstrate the facile hydrothermal synthesis of ZnO nanocomposites at low hydrothermal temperature and time. With barely 80 °C hydrothermal temperature and 2 h of reaction time, ZnO nanorods were successfully synthesized, while by slightly increasing the reaction time (6 h-and-on), nanoplates of the same material were developed. Both the obtained nanostructures were analyzed using physio-chemical characterizing tools and examined for practical relevance as gas sensing material. The optimized sample was further treated to Ag loading (1–5 mol%) for lowering the operating temperature of the sensor. ZnO sample with 3 mol% Ag loading showed excellent sensitivity of 92.7% for 1000 ppm of acetone concentration with a drop in the operating temperature from 325 °C (Pristine ZnO) to 250 °C (Ag-loaded ZnO). The morphological correlation with reaction time and thereby sensitivity and spillover mechanism are discussed. Graphic abstract</description><subject>4. Materials (general)</subject><subject>Acetone</subject><subject>Adsorption</subject><subject>Applied and Technical Physics</subject><subject>Chemistry/Food Science</subject><subject>Earth Sciences</subject><subject>Engineering</subject><subject>Environment</subject><subject>Ethanol</subject><subject>Gas sensors</subject><subject>Gases</subject><subject>Low temperature</subject><subject>Materials Science</subject><subject>Metals</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanorods</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Operating temperature</subject><subject>R&amp;D</subject><subject>Reaction time</subject><subject>Research &amp; development</subject><subject>Screen printing</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Short Communication</subject><subject>Silver</subject><subject>Surfactants</subject><subject>Zinc oxide</subject><issn>2523-3963</issn><issn>2523-3971</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kc1OwzAQhCMEEgj6ANwscQ74J65jbhX_UiUucOFiOfamTZXYwXaLeBZeFrdFcOK0O6tvZg9TFOcEXxKMxVWsaMVpiYksCRespAfFCeWUlUwKcvi7T9lxMYlxhTGmQrKqZifF1y1soPfjAC4h36LZ4urNPSOnnQ_eRqSd3Ymx1wmyTKj3H2j5aYNPSwiD7lGCYYSg0zrADk_dAKj1AWkDyTtAEVzs3ALpcew7o1Pn3XUmUZfPi2XKM3kUx67v_QYCGsAstevicFYctbqPMPmZp8Xr_d3LzWM5f354upnNS8O4TKWwpIGpbDlmjbTWysbUzABvZM0tE1XL8qG2WnDB66ZuhW7MlJPWMJkxJthpcbHPHYN_X0NMauXXweWXioq6rhiWAmeK7CkTfIwBWjWGbtDhUxGstjWofQ0q16C2NSiaPXTviZl1Cwh_yf-bvgH6Mo6a</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Nadargi, Digambar Y.</creator><creator>Tamboli, Mohaseen S.</creator><creator>Patil, Santosh S.</creator><creator>Mulla, Imtiaz S.</creator><creator>Suryavanshi, Sharad S.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191201</creationdate><title>Development of Ag/ZnO nanorods and nanoplates at low hydrothermal temperature and time for acetone sensing application: an insight into spillover mechanism</title><author>Nadargi, Digambar Y. ; Tamboli, Mohaseen S. ; Patil, Santosh S. ; Mulla, Imtiaz S. ; Suryavanshi, Sharad S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-7d1be69f503b9ddd9bc83ce5b985d374f3bc88da75758b8f7abc651fc393ce373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>4. Materials (general)</topic><topic>Acetone</topic><topic>Adsorption</topic><topic>Applied and Technical Physics</topic><topic>Chemistry/Food Science</topic><topic>Earth Sciences</topic><topic>Engineering</topic><topic>Environment</topic><topic>Ethanol</topic><topic>Gas sensors</topic><topic>Gases</topic><topic>Low temperature</topic><topic>Materials Science</topic><topic>Metals</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanorods</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Operating temperature</topic><topic>R&amp;D</topic><topic>Reaction time</topic><topic>Research &amp; development</topic><topic>Screen printing</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Short Communication</topic><topic>Silver</topic><topic>Surfactants</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nadargi, Digambar Y.</creatorcontrib><creatorcontrib>Tamboli, Mohaseen S.</creatorcontrib><creatorcontrib>Patil, Santosh S.</creatorcontrib><creatorcontrib>Mulla, Imtiaz S.</creatorcontrib><creatorcontrib>Suryavanshi, Sharad S.</creatorcontrib><collection>CrossRef</collection><jtitle>SN applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nadargi, Digambar Y.</au><au>Tamboli, Mohaseen S.</au><au>Patil, Santosh S.</au><au>Mulla, Imtiaz S.</au><au>Suryavanshi, Sharad S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of Ag/ZnO nanorods and nanoplates at low hydrothermal temperature and time for acetone sensing application: an insight into spillover mechanism</atitle><jtitle>SN applied sciences</jtitle><stitle>SN Appl. Sci</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>1</volume><issue>12</issue><spage>1564</spage><pages>1564-</pages><artnum>1564</artnum><issn>2523-3963</issn><eissn>2523-3971</eissn><abstract>Nanostructure synthesis at low temperature with high purity and yield has a great potential in the present competitive research and development of nanomaterials for varieties of application. Here, we demonstrate the facile hydrothermal synthesis of ZnO nanocomposites at low hydrothermal temperature and time. With barely 80 °C hydrothermal temperature and 2 h of reaction time, ZnO nanorods were successfully synthesized, while by slightly increasing the reaction time (6 h-and-on), nanoplates of the same material were developed. Both the obtained nanostructures were analyzed using physio-chemical characterizing tools and examined for practical relevance as gas sensing material. The optimized sample was further treated to Ag loading (1–5 mol%) for lowering the operating temperature of the sensor. ZnO sample with 3 mol% Ag loading showed excellent sensitivity of 92.7% for 1000 ppm of acetone concentration with a drop in the operating temperature from 325 °C (Pristine ZnO) to 250 °C (Ag-loaded ZnO). The morphological correlation with reaction time and thereby sensitivity and spillover mechanism are discussed. Graphic abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s42452-019-1573-2</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2523-3963
ispartof SN applied sciences, 2019-12, Vol.1 (12), p.1564, Article 1564
issn 2523-3963
2523-3971
language eng
recordid cdi_proquest_journals_2788430970
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects 4. Materials (general)
Acetone
Adsorption
Applied and Technical Physics
Chemistry/Food Science
Earth Sciences
Engineering
Environment
Ethanol
Gas sensors
Gases
Low temperature
Materials Science
Metals
Nanocomposites
Nanomaterials
Nanorods
Nanostructure
Nanotechnology
Operating temperature
R&D
Reaction time
Research & development
Screen printing
Sensitivity
Sensors
Short Communication
Silver
Surfactants
Zinc oxide
title Development of Ag/ZnO nanorods and nanoplates at low hydrothermal temperature and time for acetone sensing application: an insight into spillover mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T04%3A50%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20Ag/ZnO%20nanorods%20and%20nanoplates%20at%20low%20hydrothermal%20temperature%20and%20time%20for%20acetone%20sensing%20application:%20an%20insight%20into%20spillover%20mechanism&rft.jtitle=SN%20applied%20sciences&rft.au=Nadargi,%20Digambar%20Y.&rft.date=2019-12-01&rft.volume=1&rft.issue=12&rft.spage=1564&rft.pages=1564-&rft.artnum=1564&rft.issn=2523-3963&rft.eissn=2523-3971&rft_id=info:doi/10.1007/s42452-019-1573-2&rft_dat=%3Cproquest_cross%3E2788430970%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2788430970&rft_id=info:pmid/&rfr_iscdi=true