From tunnel NMO to layered polymorphs oxides for sodium ion batteries

The search for highly performing cathode materials for sodium batteries is a fascinating topic. Unfortunately, Na 0.44 MnO 2 (NMO), the well-known cathode material with good electrochemical performances, suffers from structural degradation due to reduction of Mn 4+ to the Jahn–Teller Mn 3+ ion, limi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SN applied sciences 2020-11, Vol.2 (11), p.1893, Article 1893
Hauptverfasser: Nuti, Michele, Spada, Daniele, Quinzeni, Irene, Capelli, Stefano, Albini, Benedetta, Galinetto, Pietro, Bini, Marcella
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 1893
container_title SN applied sciences
container_volume 2
creator Nuti, Michele
Spada, Daniele
Quinzeni, Irene
Capelli, Stefano
Albini, Benedetta
Galinetto, Pietro
Bini, Marcella
description The search for highly performing cathode materials for sodium batteries is a fascinating topic. Unfortunately, Na 0.44 MnO 2 (NMO), the well-known cathode material with good electrochemical performances, suffers from structural degradation due to reduction of Mn 4+ to the Jahn–Teller Mn 3+ ion, limiting the long-term cyclability. The cation substitution can be a useful way to mitigate the problem, thanks to the possible stabilization of mixtures of different polymorphs. In this paper, NMO was first substituted with Fe ions, obtaining Na 0.44 Mn 0.5 Fe 0.5 O 2 , with layered structure, then Al, Si and Cu (10% atom) were substituted on both Mn and Fe ions. Mixtures of P3 type phases, in different amount depending on dopant, were obtained and quantified by Rietveld refinements, and relationships between chemical composition, polymorph type and morphology were proposed. Cyclic voltammetry showed broad peaks, due to the complex structural transitions consequent to the intercalation/deintercalation of sodium. Charge discharge cycles disclosed the superior performances of Cu doped sample, which also benefits from improved air stability, a well-known issue of layered compounds. Discharge capacity values of about 63 mAh/g were detected at 1C, and after 50 cycles at C/2, capacities of about 80 mAh/g are obtained, with a capacity retention of 86%.
doi_str_mv 10.1007/s42452-020-03607-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2788428798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2788428798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-34264a701bcd343075691cc81f3b9d6b79aec7f249f06a117dfa2986f5a646793</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EElXpD7CyxNrgV_xYoqoFpEI3sLacxIZUSRzsRCL9egJBsGM1s7jnzugAcEnwNcFY3iROeUYRphhhJrBExxOwoBlliGlJTn93wc7BKqUDxphKzbhiC7DZxtDAfmhbV8Onxz3sA6zt6KIrYRfqsQmxe0swfFSlS9CHCFMoq6GBVWhhbvvexcqlC3DmbZ3c6mcuwct287y-R7v93cP6docKTnWPGKeCW4lJXpSMMywzoUlRKOJZrkuRS21dIT3l2mNhCZGlt1Qr4TMruJheXoKrubeL4X1wqTeHMMR2OmmoVIpTJbWaUnROFTGkFJ03XawaG0dDsPkyZmZjZjJmvo2Z4wSxGUpTuH118a_6H-oTSKptyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2788428798</pqid></control><display><type>article</type><title>From tunnel NMO to layered polymorphs oxides for sodium ion batteries</title><source>EZB Electronic Journals Library</source><creator>Nuti, Michele ; Spada, Daniele ; Quinzeni, Irene ; Capelli, Stefano ; Albini, Benedetta ; Galinetto, Pietro ; Bini, Marcella</creator><creatorcontrib>Nuti, Michele ; Spada, Daniele ; Quinzeni, Irene ; Capelli, Stefano ; Albini, Benedetta ; Galinetto, Pietro ; Bini, Marcella</creatorcontrib><description>The search for highly performing cathode materials for sodium batteries is a fascinating topic. Unfortunately, Na 0.44 MnO 2 (NMO), the well-known cathode material with good electrochemical performances, suffers from structural degradation due to reduction of Mn 4+ to the Jahn–Teller Mn 3+ ion, limiting the long-term cyclability. The cation substitution can be a useful way to mitigate the problem, thanks to the possible stabilization of mixtures of different polymorphs. In this paper, NMO was first substituted with Fe ions, obtaining Na 0.44 Mn 0.5 Fe 0.5 O 2 , with layered structure, then Al, Si and Cu (10% atom) were substituted on both Mn and Fe ions. Mixtures of P3 type phases, in different amount depending on dopant, were obtained and quantified by Rietveld refinements, and relationships between chemical composition, polymorph type and morphology were proposed. Cyclic voltammetry showed broad peaks, due to the complex structural transitions consequent to the intercalation/deintercalation of sodium. Charge discharge cycles disclosed the superior performances of Cu doped sample, which also benefits from improved air stability, a well-known issue of layered compounds. Discharge capacity values of about 63 mAh/g were detected at 1C, and after 50 cycles at C/2, capacities of about 80 mAh/g are obtained, with a capacity retention of 86%.</description><identifier>ISSN: 2523-3963</identifier><identifier>EISSN: 2523-3971</identifier><identifier>DOI: 10.1007/s42452-020-03607-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Aluminum ; Applied and Technical Physics ; Batteries ; Carbon ; Cathodes ; Chemical composition ; Chemistry/Food Science ; Copper ; Crystal structure ; Discharge ; Earth Sciences ; Electrochemistry ; Electrode materials ; Electrodes ; Electrolytes ; Engineering ; Environment ; Ions ; Jahn-Teller effect ; Lasers ; Lithium ; Manganese ions ; Materials Science ; Mixtures ; Physics: Battery Materials and Devices ; Research Article ; Sensors ; Silicon ; Sodium ; Sodium-ion batteries ; Spectrum analysis ; Substitutes ; Voltammetry</subject><ispartof>SN applied sciences, 2020-11, Vol.2 (11), p.1893, Article 1893</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-34264a701bcd343075691cc81f3b9d6b79aec7f249f06a117dfa2986f5a646793</citedby><cites>FETCH-LOGICAL-c429t-34264a701bcd343075691cc81f3b9d6b79aec7f249f06a117dfa2986f5a646793</cites><orcidid>0000-0001-7099-0650</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Nuti, Michele</creatorcontrib><creatorcontrib>Spada, Daniele</creatorcontrib><creatorcontrib>Quinzeni, Irene</creatorcontrib><creatorcontrib>Capelli, Stefano</creatorcontrib><creatorcontrib>Albini, Benedetta</creatorcontrib><creatorcontrib>Galinetto, Pietro</creatorcontrib><creatorcontrib>Bini, Marcella</creatorcontrib><title>From tunnel NMO to layered polymorphs oxides for sodium ion batteries</title><title>SN applied sciences</title><addtitle>SN Appl. Sci</addtitle><description>The search for highly performing cathode materials for sodium batteries is a fascinating topic. Unfortunately, Na 0.44 MnO 2 (NMO), the well-known cathode material with good electrochemical performances, suffers from structural degradation due to reduction of Mn 4+ to the Jahn–Teller Mn 3+ ion, limiting the long-term cyclability. The cation substitution can be a useful way to mitigate the problem, thanks to the possible stabilization of mixtures of different polymorphs. In this paper, NMO was first substituted with Fe ions, obtaining Na 0.44 Mn 0.5 Fe 0.5 O 2 , with layered structure, then Al, Si and Cu (10% atom) were substituted on both Mn and Fe ions. Mixtures of P3 type phases, in different amount depending on dopant, were obtained and quantified by Rietveld refinements, and relationships between chemical composition, polymorph type and morphology were proposed. Cyclic voltammetry showed broad peaks, due to the complex structural transitions consequent to the intercalation/deintercalation of sodium. Charge discharge cycles disclosed the superior performances of Cu doped sample, which also benefits from improved air stability, a well-known issue of layered compounds. Discharge capacity values of about 63 mAh/g were detected at 1C, and after 50 cycles at C/2, capacities of about 80 mAh/g are obtained, with a capacity retention of 86%.</description><subject>Aluminum</subject><subject>Applied and Technical Physics</subject><subject>Batteries</subject><subject>Carbon</subject><subject>Cathodes</subject><subject>Chemical composition</subject><subject>Chemistry/Food Science</subject><subject>Copper</subject><subject>Crystal structure</subject><subject>Discharge</subject><subject>Earth Sciences</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Engineering</subject><subject>Environment</subject><subject>Ions</subject><subject>Jahn-Teller effect</subject><subject>Lasers</subject><subject>Lithium</subject><subject>Manganese ions</subject><subject>Materials Science</subject><subject>Mixtures</subject><subject>Physics: Battery Materials and Devices</subject><subject>Research Article</subject><subject>Sensors</subject><subject>Silicon</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Spectrum analysis</subject><subject>Substitutes</subject><subject>Voltammetry</subject><issn>2523-3963</issn><issn>2523-3971</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kMtOwzAQRS0EElXpD7CyxNrgV_xYoqoFpEI3sLacxIZUSRzsRCL9egJBsGM1s7jnzugAcEnwNcFY3iROeUYRphhhJrBExxOwoBlliGlJTn93wc7BKqUDxphKzbhiC7DZxtDAfmhbV8Onxz3sA6zt6KIrYRfqsQmxe0swfFSlS9CHCFMoq6GBVWhhbvvexcqlC3DmbZ3c6mcuwct287y-R7v93cP6docKTnWPGKeCW4lJXpSMMywzoUlRKOJZrkuRS21dIT3l2mNhCZGlt1Qr4TMruJheXoKrubeL4X1wqTeHMMR2OmmoVIpTJbWaUnROFTGkFJ03XawaG0dDsPkyZmZjZjJmvo2Z4wSxGUpTuH118a_6H-oTSKptyA</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Nuti, Michele</creator><creator>Spada, Daniele</creator><creator>Quinzeni, Irene</creator><creator>Capelli, Stefano</creator><creator>Albini, Benedetta</creator><creator>Galinetto, Pietro</creator><creator>Bini, Marcella</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7099-0650</orcidid></search><sort><creationdate>20201101</creationdate><title>From tunnel NMO to layered polymorphs oxides for sodium ion batteries</title><author>Nuti, Michele ; Spada, Daniele ; Quinzeni, Irene ; Capelli, Stefano ; Albini, Benedetta ; Galinetto, Pietro ; Bini, Marcella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-34264a701bcd343075691cc81f3b9d6b79aec7f249f06a117dfa2986f5a646793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum</topic><topic>Applied and Technical Physics</topic><topic>Batteries</topic><topic>Carbon</topic><topic>Cathodes</topic><topic>Chemical composition</topic><topic>Chemistry/Food Science</topic><topic>Copper</topic><topic>Crystal structure</topic><topic>Discharge</topic><topic>Earth Sciences</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Engineering</topic><topic>Environment</topic><topic>Ions</topic><topic>Jahn-Teller effect</topic><topic>Lasers</topic><topic>Lithium</topic><topic>Manganese ions</topic><topic>Materials Science</topic><topic>Mixtures</topic><topic>Physics: Battery Materials and Devices</topic><topic>Research Article</topic><topic>Sensors</topic><topic>Silicon</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Spectrum analysis</topic><topic>Substitutes</topic><topic>Voltammetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nuti, Michele</creatorcontrib><creatorcontrib>Spada, Daniele</creatorcontrib><creatorcontrib>Quinzeni, Irene</creatorcontrib><creatorcontrib>Capelli, Stefano</creatorcontrib><creatorcontrib>Albini, Benedetta</creatorcontrib><creatorcontrib>Galinetto, Pietro</creatorcontrib><creatorcontrib>Bini, Marcella</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>SN applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nuti, Michele</au><au>Spada, Daniele</au><au>Quinzeni, Irene</au><au>Capelli, Stefano</au><au>Albini, Benedetta</au><au>Galinetto, Pietro</au><au>Bini, Marcella</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From tunnel NMO to layered polymorphs oxides for sodium ion batteries</atitle><jtitle>SN applied sciences</jtitle><stitle>SN Appl. Sci</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>2</volume><issue>11</issue><spage>1893</spage><pages>1893-</pages><artnum>1893</artnum><issn>2523-3963</issn><eissn>2523-3971</eissn><abstract>The search for highly performing cathode materials for sodium batteries is a fascinating topic. Unfortunately, Na 0.44 MnO 2 (NMO), the well-known cathode material with good electrochemical performances, suffers from structural degradation due to reduction of Mn 4+ to the Jahn–Teller Mn 3+ ion, limiting the long-term cyclability. The cation substitution can be a useful way to mitigate the problem, thanks to the possible stabilization of mixtures of different polymorphs. In this paper, NMO was first substituted with Fe ions, obtaining Na 0.44 Mn 0.5 Fe 0.5 O 2 , with layered structure, then Al, Si and Cu (10% atom) were substituted on both Mn and Fe ions. Mixtures of P3 type phases, in different amount depending on dopant, were obtained and quantified by Rietveld refinements, and relationships between chemical composition, polymorph type and morphology were proposed. Cyclic voltammetry showed broad peaks, due to the complex structural transitions consequent to the intercalation/deintercalation of sodium. Charge discharge cycles disclosed the superior performances of Cu doped sample, which also benefits from improved air stability, a well-known issue of layered compounds. Discharge capacity values of about 63 mAh/g were detected at 1C, and after 50 cycles at C/2, capacities of about 80 mAh/g are obtained, with a capacity retention of 86%.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s42452-020-03607-z</doi><orcidid>https://orcid.org/0000-0001-7099-0650</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2523-3963
ispartof SN applied sciences, 2020-11, Vol.2 (11), p.1893, Article 1893
issn 2523-3963
2523-3971
language eng
recordid cdi_proquest_journals_2788428798
source EZB Electronic Journals Library
subjects Aluminum
Applied and Technical Physics
Batteries
Carbon
Cathodes
Chemical composition
Chemistry/Food Science
Copper
Crystal structure
Discharge
Earth Sciences
Electrochemistry
Electrode materials
Electrodes
Electrolytes
Engineering
Environment
Ions
Jahn-Teller effect
Lasers
Lithium
Manganese ions
Materials Science
Mixtures
Physics: Battery Materials and Devices
Research Article
Sensors
Silicon
Sodium
Sodium-ion batteries
Spectrum analysis
Substitutes
Voltammetry
title From tunnel NMO to layered polymorphs oxides for sodium ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A51%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20tunnel%20NMO%20to%20layered%20polymorphs%20oxides%20for%20sodium%20ion%20batteries&rft.jtitle=SN%20applied%20sciences&rft.au=Nuti,%20Michele&rft.date=2020-11-01&rft.volume=2&rft.issue=11&rft.spage=1893&rft.pages=1893-&rft.artnum=1893&rft.issn=2523-3963&rft.eissn=2523-3971&rft_id=info:doi/10.1007/s42452-020-03607-z&rft_dat=%3Cproquest_cross%3E2788428798%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2788428798&rft_id=info:pmid/&rfr_iscdi=true