From tunnel NMO to layered polymorphs oxides for sodium ion batteries
The search for highly performing cathode materials for sodium batteries is a fascinating topic. Unfortunately, Na 0.44 MnO 2 (NMO), the well-known cathode material with good electrochemical performances, suffers from structural degradation due to reduction of Mn 4+ to the Jahn–Teller Mn 3+ ion, limi...
Gespeichert in:
Veröffentlicht in: | SN applied sciences 2020-11, Vol.2 (11), p.1893, Article 1893 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 1893 |
container_title | SN applied sciences |
container_volume | 2 |
creator | Nuti, Michele Spada, Daniele Quinzeni, Irene Capelli, Stefano Albini, Benedetta Galinetto, Pietro Bini, Marcella |
description | The search for highly performing cathode materials for sodium batteries is a fascinating topic. Unfortunately, Na
0.44
MnO
2
(NMO), the well-known cathode material with good electrochemical performances, suffers from structural degradation due to reduction of Mn
4+
to the Jahn–Teller Mn
3+
ion, limiting the long-term cyclability. The cation substitution can be a useful way to mitigate the problem, thanks to the possible stabilization of mixtures of different polymorphs. In this paper, NMO was first substituted with Fe ions, obtaining Na
0.44
Mn
0.5
Fe
0.5
O
2
, with layered structure, then Al, Si and Cu (10% atom) were substituted on both Mn and Fe ions. Mixtures of P3 type phases, in different amount depending on dopant, were obtained and quantified by Rietveld refinements, and relationships between chemical composition, polymorph type and morphology were proposed. Cyclic voltammetry showed broad peaks, due to the complex structural transitions consequent to the intercalation/deintercalation of sodium. Charge discharge cycles disclosed the superior performances of Cu doped sample, which also benefits from improved air stability, a well-known issue of layered compounds. Discharge capacity values of about 63 mAh/g were detected at 1C, and after 50 cycles at C/2, capacities of about 80 mAh/g are obtained, with a capacity retention of 86%. |
doi_str_mv | 10.1007/s42452-020-03607-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2788428798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2788428798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-34264a701bcd343075691cc81f3b9d6b79aec7f249f06a117dfa2986f5a646793</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EElXpD7CyxNrgV_xYoqoFpEI3sLacxIZUSRzsRCL9egJBsGM1s7jnzugAcEnwNcFY3iROeUYRphhhJrBExxOwoBlliGlJTn93wc7BKqUDxphKzbhiC7DZxtDAfmhbV8Onxz3sA6zt6KIrYRfqsQmxe0swfFSlS9CHCFMoq6GBVWhhbvvexcqlC3DmbZ3c6mcuwct287y-R7v93cP6docKTnWPGKeCW4lJXpSMMywzoUlRKOJZrkuRS21dIT3l2mNhCZGlt1Qr4TMruJheXoKrubeL4X1wqTeHMMR2OmmoVIpTJbWaUnROFTGkFJ03XawaG0dDsPkyZmZjZjJmvo2Z4wSxGUpTuH118a_6H-oTSKptyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2788428798</pqid></control><display><type>article</type><title>From tunnel NMO to layered polymorphs oxides for sodium ion batteries</title><source>EZB Electronic Journals Library</source><creator>Nuti, Michele ; Spada, Daniele ; Quinzeni, Irene ; Capelli, Stefano ; Albini, Benedetta ; Galinetto, Pietro ; Bini, Marcella</creator><creatorcontrib>Nuti, Michele ; Spada, Daniele ; Quinzeni, Irene ; Capelli, Stefano ; Albini, Benedetta ; Galinetto, Pietro ; Bini, Marcella</creatorcontrib><description>The search for highly performing cathode materials for sodium batteries is a fascinating topic. Unfortunately, Na
0.44
MnO
2
(NMO), the well-known cathode material with good electrochemical performances, suffers from structural degradation due to reduction of Mn
4+
to the Jahn–Teller Mn
3+
ion, limiting the long-term cyclability. The cation substitution can be a useful way to mitigate the problem, thanks to the possible stabilization of mixtures of different polymorphs. In this paper, NMO was first substituted with Fe ions, obtaining Na
0.44
Mn
0.5
Fe
0.5
O
2
, with layered structure, then Al, Si and Cu (10% atom) were substituted on both Mn and Fe ions. Mixtures of P3 type phases, in different amount depending on dopant, were obtained and quantified by Rietveld refinements, and relationships between chemical composition, polymorph type and morphology were proposed. Cyclic voltammetry showed broad peaks, due to the complex structural transitions consequent to the intercalation/deintercalation of sodium. Charge discharge cycles disclosed the superior performances of Cu doped sample, which also benefits from improved air stability, a well-known issue of layered compounds. Discharge capacity values of about 63 mAh/g were detected at 1C, and after 50 cycles at C/2, capacities of about 80 mAh/g are obtained, with a capacity retention of 86%.</description><identifier>ISSN: 2523-3963</identifier><identifier>EISSN: 2523-3971</identifier><identifier>DOI: 10.1007/s42452-020-03607-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Aluminum ; Applied and Technical Physics ; Batteries ; Carbon ; Cathodes ; Chemical composition ; Chemistry/Food Science ; Copper ; Crystal structure ; Discharge ; Earth Sciences ; Electrochemistry ; Electrode materials ; Electrodes ; Electrolytes ; Engineering ; Environment ; Ions ; Jahn-Teller effect ; Lasers ; Lithium ; Manganese ions ; Materials Science ; Mixtures ; Physics: Battery Materials and Devices ; Research Article ; Sensors ; Silicon ; Sodium ; Sodium-ion batteries ; Spectrum analysis ; Substitutes ; Voltammetry</subject><ispartof>SN applied sciences, 2020-11, Vol.2 (11), p.1893, Article 1893</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-34264a701bcd343075691cc81f3b9d6b79aec7f249f06a117dfa2986f5a646793</citedby><cites>FETCH-LOGICAL-c429t-34264a701bcd343075691cc81f3b9d6b79aec7f249f06a117dfa2986f5a646793</cites><orcidid>0000-0001-7099-0650</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Nuti, Michele</creatorcontrib><creatorcontrib>Spada, Daniele</creatorcontrib><creatorcontrib>Quinzeni, Irene</creatorcontrib><creatorcontrib>Capelli, Stefano</creatorcontrib><creatorcontrib>Albini, Benedetta</creatorcontrib><creatorcontrib>Galinetto, Pietro</creatorcontrib><creatorcontrib>Bini, Marcella</creatorcontrib><title>From tunnel NMO to layered polymorphs oxides for sodium ion batteries</title><title>SN applied sciences</title><addtitle>SN Appl. Sci</addtitle><description>The search for highly performing cathode materials for sodium batteries is a fascinating topic. Unfortunately, Na
0.44
MnO
2
(NMO), the well-known cathode material with good electrochemical performances, suffers from structural degradation due to reduction of Mn
4+
to the Jahn–Teller Mn
3+
ion, limiting the long-term cyclability. The cation substitution can be a useful way to mitigate the problem, thanks to the possible stabilization of mixtures of different polymorphs. In this paper, NMO was first substituted with Fe ions, obtaining Na
0.44
Mn
0.5
Fe
0.5
O
2
, with layered structure, then Al, Si and Cu (10% atom) were substituted on both Mn and Fe ions. Mixtures of P3 type phases, in different amount depending on dopant, were obtained and quantified by Rietveld refinements, and relationships between chemical composition, polymorph type and morphology were proposed. Cyclic voltammetry showed broad peaks, due to the complex structural transitions consequent to the intercalation/deintercalation of sodium. Charge discharge cycles disclosed the superior performances of Cu doped sample, which also benefits from improved air stability, a well-known issue of layered compounds. Discharge capacity values of about 63 mAh/g were detected at 1C, and after 50 cycles at C/2, capacities of about 80 mAh/g are obtained, with a capacity retention of 86%.</description><subject>Aluminum</subject><subject>Applied and Technical Physics</subject><subject>Batteries</subject><subject>Carbon</subject><subject>Cathodes</subject><subject>Chemical composition</subject><subject>Chemistry/Food Science</subject><subject>Copper</subject><subject>Crystal structure</subject><subject>Discharge</subject><subject>Earth Sciences</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Engineering</subject><subject>Environment</subject><subject>Ions</subject><subject>Jahn-Teller effect</subject><subject>Lasers</subject><subject>Lithium</subject><subject>Manganese ions</subject><subject>Materials Science</subject><subject>Mixtures</subject><subject>Physics: Battery Materials and Devices</subject><subject>Research Article</subject><subject>Sensors</subject><subject>Silicon</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Spectrum analysis</subject><subject>Substitutes</subject><subject>Voltammetry</subject><issn>2523-3963</issn><issn>2523-3971</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kMtOwzAQRS0EElXpD7CyxNrgV_xYoqoFpEI3sLacxIZUSRzsRCL9egJBsGM1s7jnzugAcEnwNcFY3iROeUYRphhhJrBExxOwoBlliGlJTn93wc7BKqUDxphKzbhiC7DZxtDAfmhbV8Onxz3sA6zt6KIrYRfqsQmxe0swfFSlS9CHCFMoq6GBVWhhbvvexcqlC3DmbZ3c6mcuwct287y-R7v93cP6docKTnWPGKeCW4lJXpSMMywzoUlRKOJZrkuRS21dIT3l2mNhCZGlt1Qr4TMruJheXoKrubeL4X1wqTeHMMR2OmmoVIpTJbWaUnROFTGkFJ03XawaG0dDsPkyZmZjZjJmvo2Z4wSxGUpTuH118a_6H-oTSKptyA</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Nuti, Michele</creator><creator>Spada, Daniele</creator><creator>Quinzeni, Irene</creator><creator>Capelli, Stefano</creator><creator>Albini, Benedetta</creator><creator>Galinetto, Pietro</creator><creator>Bini, Marcella</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7099-0650</orcidid></search><sort><creationdate>20201101</creationdate><title>From tunnel NMO to layered polymorphs oxides for sodium ion batteries</title><author>Nuti, Michele ; Spada, Daniele ; Quinzeni, Irene ; Capelli, Stefano ; Albini, Benedetta ; Galinetto, Pietro ; Bini, Marcella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-34264a701bcd343075691cc81f3b9d6b79aec7f249f06a117dfa2986f5a646793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum</topic><topic>Applied and Technical Physics</topic><topic>Batteries</topic><topic>Carbon</topic><topic>Cathodes</topic><topic>Chemical composition</topic><topic>Chemistry/Food Science</topic><topic>Copper</topic><topic>Crystal structure</topic><topic>Discharge</topic><topic>Earth Sciences</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Engineering</topic><topic>Environment</topic><topic>Ions</topic><topic>Jahn-Teller effect</topic><topic>Lasers</topic><topic>Lithium</topic><topic>Manganese ions</topic><topic>Materials Science</topic><topic>Mixtures</topic><topic>Physics: Battery Materials and Devices</topic><topic>Research Article</topic><topic>Sensors</topic><topic>Silicon</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Spectrum analysis</topic><topic>Substitutes</topic><topic>Voltammetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nuti, Michele</creatorcontrib><creatorcontrib>Spada, Daniele</creatorcontrib><creatorcontrib>Quinzeni, Irene</creatorcontrib><creatorcontrib>Capelli, Stefano</creatorcontrib><creatorcontrib>Albini, Benedetta</creatorcontrib><creatorcontrib>Galinetto, Pietro</creatorcontrib><creatorcontrib>Bini, Marcella</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>SN applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nuti, Michele</au><au>Spada, Daniele</au><au>Quinzeni, Irene</au><au>Capelli, Stefano</au><au>Albini, Benedetta</au><au>Galinetto, Pietro</au><au>Bini, Marcella</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From tunnel NMO to layered polymorphs oxides for sodium ion batteries</atitle><jtitle>SN applied sciences</jtitle><stitle>SN Appl. Sci</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>2</volume><issue>11</issue><spage>1893</spage><pages>1893-</pages><artnum>1893</artnum><issn>2523-3963</issn><eissn>2523-3971</eissn><abstract>The search for highly performing cathode materials for sodium batteries is a fascinating topic. Unfortunately, Na
0.44
MnO
2
(NMO), the well-known cathode material with good electrochemical performances, suffers from structural degradation due to reduction of Mn
4+
to the Jahn–Teller Mn
3+
ion, limiting the long-term cyclability. The cation substitution can be a useful way to mitigate the problem, thanks to the possible stabilization of mixtures of different polymorphs. In this paper, NMO was first substituted with Fe ions, obtaining Na
0.44
Mn
0.5
Fe
0.5
O
2
, with layered structure, then Al, Si and Cu (10% atom) were substituted on both Mn and Fe ions. Mixtures of P3 type phases, in different amount depending on dopant, were obtained and quantified by Rietveld refinements, and relationships between chemical composition, polymorph type and morphology were proposed. Cyclic voltammetry showed broad peaks, due to the complex structural transitions consequent to the intercalation/deintercalation of sodium. Charge discharge cycles disclosed the superior performances of Cu doped sample, which also benefits from improved air stability, a well-known issue of layered compounds. Discharge capacity values of about 63 mAh/g were detected at 1C, and after 50 cycles at C/2, capacities of about 80 mAh/g are obtained, with a capacity retention of 86%.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s42452-020-03607-z</doi><orcidid>https://orcid.org/0000-0001-7099-0650</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2523-3963 |
ispartof | SN applied sciences, 2020-11, Vol.2 (11), p.1893, Article 1893 |
issn | 2523-3963 2523-3971 |
language | eng |
recordid | cdi_proquest_journals_2788428798 |
source | EZB Electronic Journals Library |
subjects | Aluminum Applied and Technical Physics Batteries Carbon Cathodes Chemical composition Chemistry/Food Science Copper Crystal structure Discharge Earth Sciences Electrochemistry Electrode materials Electrodes Electrolytes Engineering Environment Ions Jahn-Teller effect Lasers Lithium Manganese ions Materials Science Mixtures Physics: Battery Materials and Devices Research Article Sensors Silicon Sodium Sodium-ion batteries Spectrum analysis Substitutes Voltammetry |
title | From tunnel NMO to layered polymorphs oxides for sodium ion batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A51%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20tunnel%20NMO%20to%20layered%20polymorphs%20oxides%20for%20sodium%20ion%20batteries&rft.jtitle=SN%20applied%20sciences&rft.au=Nuti,%20Michele&rft.date=2020-11-01&rft.volume=2&rft.issue=11&rft.spage=1893&rft.pages=1893-&rft.artnum=1893&rft.issn=2523-3963&rft.eissn=2523-3971&rft_id=info:doi/10.1007/s42452-020-03607-z&rft_dat=%3Cproquest_cross%3E2788428798%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2788428798&rft_id=info:pmid/&rfr_iscdi=true |