Computational modeling and analysis of flow-induced vibration of an elastic splitter plate using a sharp-interface immersed boundary method
We present the development and benchmarking of an in-house fluid–structure interaction (FSI) solver. An implicit partitioned approach is utilized to couple a sharp-interface immersed boundary method-based flow solver and a finite-element method-based structural solver. In the present work, the coupl...
Gespeichert in:
Veröffentlicht in: | SN applied sciences 2020-06, Vol.2 (6), p.1110, Article 1110 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 1110 |
container_title | SN applied sciences |
container_volume | 2 |
creator | Kundu, Anup Soti, Atul K. Garg, Hemanshul Bhardwaj, Rajneesh Thompson, Mark C. |
description | We present the development and benchmarking of an in-house fluid–structure interaction (FSI) solver. An implicit partitioned approach is utilized to couple a sharp-interface immersed boundary method-based flow solver and a finite-element method-based structural solver. In the present work, the coupling is accelerated using a dynamic under-relaxation scheme. The revised coupling is around two to three times faster and numerically stable, as compared to the one that uses a constant under-relaxation parameter. The solver is validated against two FSI benchmarks in which a thin, finite thickness, elastic splitter plate is attached to the lee side of a circular or square rigid cylinder, subjected to laminar flow. In these two-dimensional benchmarks, the flow induces a wave-like deformation in the plate, and it attains a periodic self-sustained oscillation. We employ the FSI solver to analyze the flow-induced vibration (FIV) of the plate in a uniform laminar free-stream flow for a wide range of mass ratio and bending stiffness at Reynolds number (
Re
) of 100, based on the diameter of the cylinder. At the given
Re
, two-dimensional numerical simulations show that the FIV of the plate effectively depends only on the mass ratio and bending stiffness. The largest displacement of the plate vibration is found to occur in the lock-in region, where the vortex shedding frequency of the coupled fluid–structure system is close to the natural frequency of the splitter plate. We briefly discuss wake structures and phase plots for different cases of mass ratio and bending stiffness. |
doi_str_mv | 10.1007/s42452-020-2876-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2788428538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2788428538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-8749916482edef3ecfdbbbf6347b91ddac968489dd91f200db06a3768e3514863</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhQdRsGgfwF3A9Wj-ZiZZSvEPCm50HTKTpE3JTMYko7Sv4EubtqIrF5d74Z7vcO8piisEbxCEzW2kmFa4hBiWmDV1uTspZrjCpCS8Qae_c03Oi3mMGwghbjihjMyKr4XvxynJZP0gHei90s4OKyAHlUu6bbQReAOM85-lHdTUaQU-bBsOxH4jB6CdjMl2II7OpqQDGJ1MGkzx4ATiWoYxw3ljZKeB7XsdYvZp_TQoGbag12nt1WVxZqSLev7TL4q3h_vXxVO5fHl8Xtwty45UPJWsoZyjmjKslTZEd0a1bWtqQpuWI6Vkx2tGGVeKI4MhVC2sJWlqpkmFKKvJRXF99B2Df590TGLjp5CfjQI3jFHMKsKyCh1VXfAxBm3EGGyfrxUIin3s4hi7yLGLfexilxl8ZGLWDisd_pz_h74BW6aI4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2788428538</pqid></control><display><type>article</type><title>Computational modeling and analysis of flow-induced vibration of an elastic splitter plate using a sharp-interface immersed boundary method</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kundu, Anup ; Soti, Atul K. ; Garg, Hemanshul ; Bhardwaj, Rajneesh ; Thompson, Mark C.</creator><creatorcontrib>Kundu, Anup ; Soti, Atul K. ; Garg, Hemanshul ; Bhardwaj, Rajneesh ; Thompson, Mark C.</creatorcontrib><description>We present the development and benchmarking of an in-house fluid–structure interaction (FSI) solver. An implicit partitioned approach is utilized to couple a sharp-interface immersed boundary method-based flow solver and a finite-element method-based structural solver. In the present work, the coupling is accelerated using a dynamic under-relaxation scheme. The revised coupling is around two to three times faster and numerically stable, as compared to the one that uses a constant under-relaxation parameter. The solver is validated against two FSI benchmarks in which a thin, finite thickness, elastic splitter plate is attached to the lee side of a circular or square rigid cylinder, subjected to laminar flow. In these two-dimensional benchmarks, the flow induces a wave-like deformation in the plate, and it attains a periodic self-sustained oscillation. We employ the FSI solver to analyze the flow-induced vibration (FIV) of the plate in a uniform laminar free-stream flow for a wide range of mass ratio and bending stiffness at Reynolds number (
Re
) of 100, based on the diameter of the cylinder. At the given
Re
, two-dimensional numerical simulations show that the FIV of the plate effectively depends only on the mass ratio and bending stiffness. The largest displacement of the plate vibration is found to occur in the lock-in region, where the vortex shedding frequency of the coupled fluid–structure system is close to the natural frequency of the splitter plate. We briefly discuss wake structures and phase plots for different cases of mass ratio and bending stiffness.</description><identifier>ISSN: 2523-3963</identifier><identifier>EISSN: 2523-3971</identifier><identifier>DOI: 10.1007/s42452-020-2876-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applied and Technical Physics ; Benchmarks ; Bending ; Chemistry/Food Science ; Computer applications ; Coupling ; Cylinders ; Diameters ; Earth Sciences ; Engineering ; Engineering: Computational Multiscale Modelling and Analysis in Engineering and Mechanics ; Environment ; Finite element method ; Flow generated vibrations ; Flow velocity ; Fluid flow ; Fluid-structure interaction ; Laminar flow ; Materials Science ; Mathematical models ; Research Article ; Resonant frequencies ; Reynolds number ; Solvers ; Splitter plates ; Stiffness ; Stream discharge ; Stream flow ; Two dimensional flow ; Vibration ; Vibration analysis ; Vortex shedding ; Vortices</subject><ispartof>SN applied sciences, 2020-06, Vol.2 (6), p.1110, Article 1110</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Springer Nature Switzerland AG 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-8749916482edef3ecfdbbbf6347b91ddac968489dd91f200db06a3768e3514863</citedby><cites>FETCH-LOGICAL-c359t-8749916482edef3ecfdbbbf6347b91ddac968489dd91f200db06a3768e3514863</cites><orcidid>0000-0003-2995-7394</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Kundu, Anup</creatorcontrib><creatorcontrib>Soti, Atul K.</creatorcontrib><creatorcontrib>Garg, Hemanshul</creatorcontrib><creatorcontrib>Bhardwaj, Rajneesh</creatorcontrib><creatorcontrib>Thompson, Mark C.</creatorcontrib><title>Computational modeling and analysis of flow-induced vibration of an elastic splitter plate using a sharp-interface immersed boundary method</title><title>SN applied sciences</title><addtitle>SN Appl. Sci</addtitle><description>We present the development and benchmarking of an in-house fluid–structure interaction (FSI) solver. An implicit partitioned approach is utilized to couple a sharp-interface immersed boundary method-based flow solver and a finite-element method-based structural solver. In the present work, the coupling is accelerated using a dynamic under-relaxation scheme. The revised coupling is around two to three times faster and numerically stable, as compared to the one that uses a constant under-relaxation parameter. The solver is validated against two FSI benchmarks in which a thin, finite thickness, elastic splitter plate is attached to the lee side of a circular or square rigid cylinder, subjected to laminar flow. In these two-dimensional benchmarks, the flow induces a wave-like deformation in the plate, and it attains a periodic self-sustained oscillation. We employ the FSI solver to analyze the flow-induced vibration (FIV) of the plate in a uniform laminar free-stream flow for a wide range of mass ratio and bending stiffness at Reynolds number (
Re
) of 100, based on the diameter of the cylinder. At the given
Re
, two-dimensional numerical simulations show that the FIV of the plate effectively depends only on the mass ratio and bending stiffness. The largest displacement of the plate vibration is found to occur in the lock-in region, where the vortex shedding frequency of the coupled fluid–structure system is close to the natural frequency of the splitter plate. We briefly discuss wake structures and phase plots for different cases of mass ratio and bending stiffness.</description><subject>Applied and Technical Physics</subject><subject>Benchmarks</subject><subject>Bending</subject><subject>Chemistry/Food Science</subject><subject>Computer applications</subject><subject>Coupling</subject><subject>Cylinders</subject><subject>Diameters</subject><subject>Earth Sciences</subject><subject>Engineering</subject><subject>Engineering: Computational Multiscale Modelling and Analysis in Engineering and Mechanics</subject><subject>Environment</subject><subject>Finite element method</subject><subject>Flow generated vibrations</subject><subject>Flow velocity</subject><subject>Fluid flow</subject><subject>Fluid-structure interaction</subject><subject>Laminar flow</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Research Article</subject><subject>Resonant frequencies</subject><subject>Reynolds number</subject><subject>Solvers</subject><subject>Splitter plates</subject><subject>Stiffness</subject><subject>Stream discharge</subject><subject>Stream flow</subject><subject>Two dimensional flow</subject><subject>Vibration</subject><subject>Vibration analysis</subject><subject>Vortex shedding</subject><subject>Vortices</subject><issn>2523-3963</issn><issn>2523-3971</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhQdRsGgfwF3A9Wj-ZiZZSvEPCm50HTKTpE3JTMYko7Sv4EubtqIrF5d74Z7vcO8piisEbxCEzW2kmFa4hBiWmDV1uTspZrjCpCS8Qae_c03Oi3mMGwghbjihjMyKr4XvxynJZP0gHei90s4OKyAHlUu6bbQReAOM85-lHdTUaQU-bBsOxH4jB6CdjMl2II7OpqQDGJ1MGkzx4ATiWoYxw3ljZKeB7XsdYvZp_TQoGbag12nt1WVxZqSLev7TL4q3h_vXxVO5fHl8Xtwty45UPJWsoZyjmjKslTZEd0a1bWtqQpuWI6Vkx2tGGVeKI4MhVC2sJWlqpkmFKKvJRXF99B2Df590TGLjp5CfjQI3jFHMKsKyCh1VXfAxBm3EGGyfrxUIin3s4hi7yLGLfexilxl8ZGLWDisd_pz_h74BW6aI4g</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Kundu, Anup</creator><creator>Soti, Atul K.</creator><creator>Garg, Hemanshul</creator><creator>Bhardwaj, Rajneesh</creator><creator>Thompson, Mark C.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2995-7394</orcidid></search><sort><creationdate>20200601</creationdate><title>Computational modeling and analysis of flow-induced vibration of an elastic splitter plate using a sharp-interface immersed boundary method</title><author>Kundu, Anup ; Soti, Atul K. ; Garg, Hemanshul ; Bhardwaj, Rajneesh ; Thompson, Mark C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-8749916482edef3ecfdbbbf6347b91ddac968489dd91f200db06a3768e3514863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied and Technical Physics</topic><topic>Benchmarks</topic><topic>Bending</topic><topic>Chemistry/Food Science</topic><topic>Computer applications</topic><topic>Coupling</topic><topic>Cylinders</topic><topic>Diameters</topic><topic>Earth Sciences</topic><topic>Engineering</topic><topic>Engineering: Computational Multiscale Modelling and Analysis in Engineering and Mechanics</topic><topic>Environment</topic><topic>Finite element method</topic><topic>Flow generated vibrations</topic><topic>Flow velocity</topic><topic>Fluid flow</topic><topic>Fluid-structure interaction</topic><topic>Laminar flow</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Research Article</topic><topic>Resonant frequencies</topic><topic>Reynolds number</topic><topic>Solvers</topic><topic>Splitter plates</topic><topic>Stiffness</topic><topic>Stream discharge</topic><topic>Stream flow</topic><topic>Two dimensional flow</topic><topic>Vibration</topic><topic>Vibration analysis</topic><topic>Vortex shedding</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kundu, Anup</creatorcontrib><creatorcontrib>Soti, Atul K.</creatorcontrib><creatorcontrib>Garg, Hemanshul</creatorcontrib><creatorcontrib>Bhardwaj, Rajneesh</creatorcontrib><creatorcontrib>Thompson, Mark C.</creatorcontrib><collection>CrossRef</collection><jtitle>SN applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kundu, Anup</au><au>Soti, Atul K.</au><au>Garg, Hemanshul</au><au>Bhardwaj, Rajneesh</au><au>Thompson, Mark C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational modeling and analysis of flow-induced vibration of an elastic splitter plate using a sharp-interface immersed boundary method</atitle><jtitle>SN applied sciences</jtitle><stitle>SN Appl. Sci</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>2</volume><issue>6</issue><spage>1110</spage><pages>1110-</pages><artnum>1110</artnum><issn>2523-3963</issn><eissn>2523-3971</eissn><abstract>We present the development and benchmarking of an in-house fluid–structure interaction (FSI) solver. An implicit partitioned approach is utilized to couple a sharp-interface immersed boundary method-based flow solver and a finite-element method-based structural solver. In the present work, the coupling is accelerated using a dynamic under-relaxation scheme. The revised coupling is around two to three times faster and numerically stable, as compared to the one that uses a constant under-relaxation parameter. The solver is validated against two FSI benchmarks in which a thin, finite thickness, elastic splitter plate is attached to the lee side of a circular or square rigid cylinder, subjected to laminar flow. In these two-dimensional benchmarks, the flow induces a wave-like deformation in the plate, and it attains a periodic self-sustained oscillation. We employ the FSI solver to analyze the flow-induced vibration (FIV) of the plate in a uniform laminar free-stream flow for a wide range of mass ratio and bending stiffness at Reynolds number (
Re
) of 100, based on the diameter of the cylinder. At the given
Re
, two-dimensional numerical simulations show that the FIV of the plate effectively depends only on the mass ratio and bending stiffness. The largest displacement of the plate vibration is found to occur in the lock-in region, where the vortex shedding frequency of the coupled fluid–structure system is close to the natural frequency of the splitter plate. We briefly discuss wake structures and phase plots for different cases of mass ratio and bending stiffness.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s42452-020-2876-z</doi><orcidid>https://orcid.org/0000-0003-2995-7394</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2523-3963 |
ispartof | SN applied sciences, 2020-06, Vol.2 (6), p.1110, Article 1110 |
issn | 2523-3963 2523-3971 |
language | eng |
recordid | cdi_proquest_journals_2788428538 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Applied and Technical Physics Benchmarks Bending Chemistry/Food Science Computer applications Coupling Cylinders Diameters Earth Sciences Engineering Engineering: Computational Multiscale Modelling and Analysis in Engineering and Mechanics Environment Finite element method Flow generated vibrations Flow velocity Fluid flow Fluid-structure interaction Laminar flow Materials Science Mathematical models Research Article Resonant frequencies Reynolds number Solvers Splitter plates Stiffness Stream discharge Stream flow Two dimensional flow Vibration Vibration analysis Vortex shedding Vortices |
title | Computational modeling and analysis of flow-induced vibration of an elastic splitter plate using a sharp-interface immersed boundary method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A28%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20modeling%20and%20analysis%20of%20flow-induced%20vibration%20of%20an%20elastic%20splitter%20plate%20using%20a%20sharp-interface%20immersed%20boundary%20method&rft.jtitle=SN%20applied%20sciences&rft.au=Kundu,%20Anup&rft.date=2020-06-01&rft.volume=2&rft.issue=6&rft.spage=1110&rft.pages=1110-&rft.artnum=1110&rft.issn=2523-3963&rft.eissn=2523-3971&rft_id=info:doi/10.1007/s42452-020-2876-z&rft_dat=%3Cproquest_cross%3E2788428538%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2788428538&rft_id=info:pmid/&rfr_iscdi=true |