Design and simulation of a high-performance Cd-free Cu2SnSe3 solar cells with SnS electron-blocking hole transport layer and TiO2 electron transport layer by SCAPS-1D
This article presents numerical investigations of the novel (Ni/SnS/Cu 2 SnSe 3 /TiO 2 /ITO/Al) heterostructure of Cu 2 SnSe 3 based solar cell using SCAPS-1D simulator. Purpose of this research is to explore the influence of SnS hole transport layer (HTL) and TiO 2 electron transport layer (ETL) on...
Gespeichert in:
Veröffentlicht in: | SN applied sciences 2021-02, Vol.3 (2), p.253, Article 253 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 253 |
container_title | SN applied sciences |
container_volume | 3 |
creator | Rahman, M. Atowar |
description | This article presents numerical investigations of the novel (Ni/SnS/Cu
2
SnSe
3
/TiO
2
/ITO/Al) heterostructure of Cu
2
SnSe
3
based solar cell using SCAPS-1D simulator. Purpose of this research is to explore the influence of SnS hole transport layer (HTL) and TiO
2
electron transport layer (ETL) on the performance of the proposed cell. Based on the proposed device architecture, effects of thickness and carrier concentration of absorber layer, SnS HTL, TiO
2
ETL, absorber layer defect density, operating temperature and back-contact metal work function (BMWF) are studied to improve the cell performance. Our initial simulation results show that if SnS HTL is not introduced, the efficiency of standard Cu
2
SnSe
3
cell is 1.66%, which is well agreed with the reported experimental results in literature. However, by using SnS and TiO
2
as HTL and ETL, respectively and optimizing the cell parameters, a simulated efficiency of up to 27% can be achieved. For Cu
2
SnSe
3
absorber layer, 5 × 10
17
cm
−
3
and 1500 nm are the optimal values of carrier concentration and thickness, respectively. On the other hand, the BMWF is estimated to be greater than 5.2 eV for optimum cell performance. Results of this contribution can provide constructive research avenues for thin-films photovoltaic industry to fabricate cost-effective, high-efficiency and cadmium-free Cu
2
SnSe
3
-based solar cells. |
doi_str_mv | 10.1007/s42452-021-04267-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2788427156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2788427156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-2dd409d3bc13c8d5b0b640c521103e00a4f483c9c45efa7ff1c7db6be0697f323</originalsourceid><addsrcrecordid>eNp9kc1KAzEUhQdRsNS-gKuA62j-ZtJZltY_KFRoXYdM5qadmiY1mSJ9IZ_TsZW6EFzdy-U753A5WXZNyS0lRN4lwUTOMGEUE8EKiflZ1mM545iXkp6f9oJfZoOU1oQQJksuhryXfU4gNUuPtK9RajY7p9smeBQs0mjVLFd4C9GGuNHeABrX2Ebo5o7N_Rw4SsHpiAw4l9BH065Qd0bgwLQxeFy5YN4av0Sr4AC1Ufu0DbFFTu8hHhIXzYyd-D9EtUfz8ehljunkKruw2iUY_Mx-9vpwvxg_4ens8Xk8mmLDC95iVteClDWvDOVmWOcVqQpBTM4oJRwI0cJ2X5vSiBysltZSI-uqqIAUpbSc8X52c_TdxvC-g9SqddhF30UqJodDwSTNi45iR8rEkFIEq7ax2ei4V5So70rUsRLVVaIOlSjeifhRlDrYLyH-Wv-j-gKo5o-6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2788427156</pqid></control><display><type>article</type><title>Design and simulation of a high-performance Cd-free Cu2SnSe3 solar cells with SnS electron-blocking hole transport layer and TiO2 electron transport layer by SCAPS-1D</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Rahman, M. Atowar</creator><creatorcontrib>Rahman, M. Atowar</creatorcontrib><description>This article presents numerical investigations of the novel (Ni/SnS/Cu
2
SnSe
3
/TiO
2
/ITO/Al) heterostructure of Cu
2
SnSe
3
based solar cell using SCAPS-1D simulator. Purpose of this research is to explore the influence of SnS hole transport layer (HTL) and TiO
2
electron transport layer (ETL) on the performance of the proposed cell. Based on the proposed device architecture, effects of thickness and carrier concentration of absorber layer, SnS HTL, TiO
2
ETL, absorber layer defect density, operating temperature and back-contact metal work function (BMWF) are studied to improve the cell performance. Our initial simulation results show that if SnS HTL is not introduced, the efficiency of standard Cu
2
SnSe
3
cell is 1.66%, which is well agreed with the reported experimental results in literature. However, by using SnS and TiO
2
as HTL and ETL, respectively and optimizing the cell parameters, a simulated efficiency of up to 27% can be achieved. For Cu
2
SnSe
3
absorber layer, 5 × 10
17
cm
−
3
and 1500 nm are the optimal values of carrier concentration and thickness, respectively. On the other hand, the BMWF is estimated to be greater than 5.2 eV for optimum cell performance. Results of this contribution can provide constructive research avenues for thin-films photovoltaic industry to fabricate cost-effective, high-efficiency and cadmium-free Cu
2
SnSe
3
-based solar cells.</description><identifier>ISSN: 2523-3963</identifier><identifier>EISSN: 2523-3971</identifier><identifier>DOI: 10.1007/s42452-021-04267-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>4. Materials (general) ; Absorbers ; Applied and Technical Physics ; Cadmium ; Cadmium telluride ; Carrier density ; Chemistry/Food Science ; Computer architecture ; Defects ; Earth Sciences ; Efficiency ; Electron transport ; Engineering ; Environment ; Heterostructures ; Interfaces ; Manufacturing ; Materials Science ; Operating temperature ; Optimization ; Photovoltaic cells ; Photovoltaics ; Quantum dots ; Research Article ; Simulation ; Solar cells ; Thickness ; Thin films ; Titanium dioxide ; Work functions</subject><ispartof>SN applied sciences, 2021-02, Vol.3 (2), p.253, Article 253</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-2dd409d3bc13c8d5b0b640c521103e00a4f483c9c45efa7ff1c7db6be0697f323</citedby><cites>FETCH-LOGICAL-c363t-2dd409d3bc13c8d5b0b640c521103e00a4f483c9c45efa7ff1c7db6be0697f323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s42452-021-04267-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/s42452-021-04267-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27924,27925,41120,42189,51576</link.rule.ids></links><search><creatorcontrib>Rahman, M. Atowar</creatorcontrib><title>Design and simulation of a high-performance Cd-free Cu2SnSe3 solar cells with SnS electron-blocking hole transport layer and TiO2 electron transport layer by SCAPS-1D</title><title>SN applied sciences</title><addtitle>SN Appl. Sci</addtitle><description>This article presents numerical investigations of the novel (Ni/SnS/Cu
2
SnSe
3
/TiO
2
/ITO/Al) heterostructure of Cu
2
SnSe
3
based solar cell using SCAPS-1D simulator. Purpose of this research is to explore the influence of SnS hole transport layer (HTL) and TiO
2
electron transport layer (ETL) on the performance of the proposed cell. Based on the proposed device architecture, effects of thickness and carrier concentration of absorber layer, SnS HTL, TiO
2
ETL, absorber layer defect density, operating temperature and back-contact metal work function (BMWF) are studied to improve the cell performance. Our initial simulation results show that if SnS HTL is not introduced, the efficiency of standard Cu
2
SnSe
3
cell is 1.66%, which is well agreed with the reported experimental results in literature. However, by using SnS and TiO
2
as HTL and ETL, respectively and optimizing the cell parameters, a simulated efficiency of up to 27% can be achieved. For Cu
2
SnSe
3
absorber layer, 5 × 10
17
cm
−
3
and 1500 nm are the optimal values of carrier concentration and thickness, respectively. On the other hand, the BMWF is estimated to be greater than 5.2 eV for optimum cell performance. Results of this contribution can provide constructive research avenues for thin-films photovoltaic industry to fabricate cost-effective, high-efficiency and cadmium-free Cu
2
SnSe
3
-based solar cells.</description><subject>4. Materials (general)</subject><subject>Absorbers</subject><subject>Applied and Technical Physics</subject><subject>Cadmium</subject><subject>Cadmium telluride</subject><subject>Carrier density</subject><subject>Chemistry/Food Science</subject><subject>Computer architecture</subject><subject>Defects</subject><subject>Earth Sciences</subject><subject>Efficiency</subject><subject>Electron transport</subject><subject>Engineering</subject><subject>Environment</subject><subject>Heterostructures</subject><subject>Interfaces</subject><subject>Manufacturing</subject><subject>Materials Science</subject><subject>Operating temperature</subject><subject>Optimization</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Quantum dots</subject><subject>Research Article</subject><subject>Simulation</subject><subject>Solar cells</subject><subject>Thickness</subject><subject>Thin films</subject><subject>Titanium dioxide</subject><subject>Work functions</subject><issn>2523-3963</issn><issn>2523-3971</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1KAzEUhQdRsNS-gKuA62j-ZtJZltY_KFRoXYdM5qadmiY1mSJ9IZ_TsZW6EFzdy-U753A5WXZNyS0lRN4lwUTOMGEUE8EKiflZ1mM545iXkp6f9oJfZoOU1oQQJksuhryXfU4gNUuPtK9RajY7p9smeBQs0mjVLFd4C9GGuNHeABrX2Ebo5o7N_Rw4SsHpiAw4l9BH065Qd0bgwLQxeFy5YN4av0Sr4AC1Ufu0DbFFTu8hHhIXzYyd-D9EtUfz8ehljunkKruw2iUY_Mx-9vpwvxg_4ens8Xk8mmLDC95iVteClDWvDOVmWOcVqQpBTM4oJRwI0cJ2X5vSiBysltZSI-uqqIAUpbSc8X52c_TdxvC-g9SqddhF30UqJodDwSTNi45iR8rEkFIEq7ax2ei4V5So70rUsRLVVaIOlSjeifhRlDrYLyH-Wv-j-gKo5o-6</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Rahman, M. Atowar</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20210201</creationdate><title>Design and simulation of a high-performance Cd-free Cu2SnSe3 solar cells with SnS electron-blocking hole transport layer and TiO2 electron transport layer by SCAPS-1D</title><author>Rahman, M. Atowar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-2dd409d3bc13c8d5b0b640c521103e00a4f483c9c45efa7ff1c7db6be0697f323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>4. Materials (general)</topic><topic>Absorbers</topic><topic>Applied and Technical Physics</topic><topic>Cadmium</topic><topic>Cadmium telluride</topic><topic>Carrier density</topic><topic>Chemistry/Food Science</topic><topic>Computer architecture</topic><topic>Defects</topic><topic>Earth Sciences</topic><topic>Efficiency</topic><topic>Electron transport</topic><topic>Engineering</topic><topic>Environment</topic><topic>Heterostructures</topic><topic>Interfaces</topic><topic>Manufacturing</topic><topic>Materials Science</topic><topic>Operating temperature</topic><topic>Optimization</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Quantum dots</topic><topic>Research Article</topic><topic>Simulation</topic><topic>Solar cells</topic><topic>Thickness</topic><topic>Thin films</topic><topic>Titanium dioxide</topic><topic>Work functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahman, M. Atowar</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SN applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahman, M. Atowar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and simulation of a high-performance Cd-free Cu2SnSe3 solar cells with SnS electron-blocking hole transport layer and TiO2 electron transport layer by SCAPS-1D</atitle><jtitle>SN applied sciences</jtitle><stitle>SN Appl. Sci</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>3</volume><issue>2</issue><spage>253</spage><pages>253-</pages><artnum>253</artnum><issn>2523-3963</issn><eissn>2523-3971</eissn><abstract>This article presents numerical investigations of the novel (Ni/SnS/Cu
2
SnSe
3
/TiO
2
/ITO/Al) heterostructure of Cu
2
SnSe
3
based solar cell using SCAPS-1D simulator. Purpose of this research is to explore the influence of SnS hole transport layer (HTL) and TiO
2
electron transport layer (ETL) on the performance of the proposed cell. Based on the proposed device architecture, effects of thickness and carrier concentration of absorber layer, SnS HTL, TiO
2
ETL, absorber layer defect density, operating temperature and back-contact metal work function (BMWF) are studied to improve the cell performance. Our initial simulation results show that if SnS HTL is not introduced, the efficiency of standard Cu
2
SnSe
3
cell is 1.66%, which is well agreed with the reported experimental results in literature. However, by using SnS and TiO
2
as HTL and ETL, respectively and optimizing the cell parameters, a simulated efficiency of up to 27% can be achieved. For Cu
2
SnSe
3
absorber layer, 5 × 10
17
cm
−
3
and 1500 nm are the optimal values of carrier concentration and thickness, respectively. On the other hand, the BMWF is estimated to be greater than 5.2 eV for optimum cell performance. Results of this contribution can provide constructive research avenues for thin-films photovoltaic industry to fabricate cost-effective, high-efficiency and cadmium-free Cu
2
SnSe
3
-based solar cells.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s42452-021-04267-3</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2523-3963 |
ispartof | SN applied sciences, 2021-02, Vol.3 (2), p.253, Article 253 |
issn | 2523-3963 2523-3971 |
language | eng |
recordid | cdi_proquest_journals_2788427156 |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | 4. Materials (general) Absorbers Applied and Technical Physics Cadmium Cadmium telluride Carrier density Chemistry/Food Science Computer architecture Defects Earth Sciences Efficiency Electron transport Engineering Environment Heterostructures Interfaces Manufacturing Materials Science Operating temperature Optimization Photovoltaic cells Photovoltaics Quantum dots Research Article Simulation Solar cells Thickness Thin films Titanium dioxide Work functions |
title | Design and simulation of a high-performance Cd-free Cu2SnSe3 solar cells with SnS electron-blocking hole transport layer and TiO2 electron transport layer by SCAPS-1D |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A50%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20simulation%20of%20a%20high-performance%20Cd-free%20Cu2SnSe3%20solar%20cells%20with%20SnS%20electron-blocking%20hole%20transport%20layer%20and%20TiO2%20electron%20transport%20layer%20by%20SCAPS-1D&rft.jtitle=SN%20applied%20sciences&rft.au=Rahman,%20M.%20Atowar&rft.date=2021-02-01&rft.volume=3&rft.issue=2&rft.spage=253&rft.pages=253-&rft.artnum=253&rft.issn=2523-3963&rft.eissn=2523-3971&rft_id=info:doi/10.1007/s42452-021-04267-3&rft_dat=%3Cproquest_cross%3E2788427156%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2788427156&rft_id=info:pmid/&rfr_iscdi=true |