Notes on K-contact manifolds as generalized Ricci solitons

Inspired by a result of Sharma in J Geom 89: 138-147, 2008, we prove that a K -contact generalized gradient soliton, satisfying some conditions, is necessarily Einstein. For the non-gradient case we show that the generalized soliton vector field is a Jacobi vector field along the geodesics of the Re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Afrika mathematica 2023-06, Vol.34 (2), Article 21
Hauptverfasser: Mekki, Mohammed El Amine, Cherif, Ahmed Mohammed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Afrika mathematica
container_volume 34
creator Mekki, Mohammed El Amine
Cherif, Ahmed Mohammed
description Inspired by a result of Sharma in J Geom 89: 138-147, 2008, we prove that a K -contact generalized gradient soliton, satisfying some conditions, is necessarily Einstein. For the non-gradient case we show that the generalized soliton vector field is a Jacobi vector field along the geodesics of the Reeb vector field provided that the last two vector fields are orthogonal.
doi_str_mv 10.1007/s13370-023-01061-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2788423573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2788423573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-248ecb6bc0c0e782ced7a41da7dd54ad7c53fd82a65a22da1d784b2027fddb003</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWGr_gKuA6-jLxyQZd1LUikVBdB0ySaZMmSY1mS701zs6gjvf5m7uuQ8OQucULimAuiqUcwUEGCdAQVJSH6EZozUQJaU-RjMKlJFaQHWKFqVsYTwhqaz4DF0_pSEUnCJ-JC7FwboB72zs2tT7gm3BmxBDtn33GTx-6ZzrcEl9N6RYztBJa_sSFr85R293t6_LFVk_3z8sb9bEMQUDYUIH18jGgYOgNHPBKyuot8r7SlivXMVbr5mVlWXMW-qVFg0DplrvGwA-RxfT7j6n90Mog9mmQ47jS8OU1oLxSvGxxaaWy6mUHFqzz93O5g9DwXxrMpMmM2oyP5pMPUJ8gspYjpuQ_6b_ob4ADjdqBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2788423573</pqid></control><display><type>article</type><title>Notes on K-contact manifolds as generalized Ricci solitons</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mekki, Mohammed El Amine ; Cherif, Ahmed Mohammed</creator><creatorcontrib>Mekki, Mohammed El Amine ; Cherif, Ahmed Mohammed</creatorcontrib><description>Inspired by a result of Sharma in J Geom 89: 138-147, 2008, we prove that a K -contact generalized gradient soliton, satisfying some conditions, is necessarily Einstein. For the non-gradient case we show that the generalized soliton vector field is a Jacobi vector field along the geodesics of the Reeb vector field provided that the last two vector fields are orthogonal.</description><identifier>ISSN: 1012-9405</identifier><identifier>EISSN: 2190-7668</identifier><identifier>DOI: 10.1007/s13370-023-01061-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Fields (mathematics) ; Geodesy ; History of Mathematical Sciences ; Mathematics ; Mathematics and Statistics ; Mathematics Education ; Solitary waves</subject><ispartof>Afrika mathematica, 2023-06, Vol.34 (2), Article 21</ispartof><rights>African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-248ecb6bc0c0e782ced7a41da7dd54ad7c53fd82a65a22da1d784b2027fddb003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13370-023-01061-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13370-023-01061-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Mekki, Mohammed El Amine</creatorcontrib><creatorcontrib>Cherif, Ahmed Mohammed</creatorcontrib><title>Notes on K-contact manifolds as generalized Ricci solitons</title><title>Afrika mathematica</title><addtitle>Afr. Mat</addtitle><description>Inspired by a result of Sharma in J Geom 89: 138-147, 2008, we prove that a K -contact generalized gradient soliton, satisfying some conditions, is necessarily Einstein. For the non-gradient case we show that the generalized soliton vector field is a Jacobi vector field along the geodesics of the Reeb vector field provided that the last two vector fields are orthogonal.</description><subject>Applications of Mathematics</subject><subject>Fields (mathematics)</subject><subject>Geodesy</subject><subject>History of Mathematical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics Education</subject><subject>Solitary waves</subject><issn>1012-9405</issn><issn>2190-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWGr_gKuA6-jLxyQZd1LUikVBdB0ySaZMmSY1mS701zs6gjvf5m7uuQ8OQucULimAuiqUcwUEGCdAQVJSH6EZozUQJaU-RjMKlJFaQHWKFqVsYTwhqaz4DF0_pSEUnCJ-JC7FwboB72zs2tT7gm3BmxBDtn33GTx-6ZzrcEl9N6RYztBJa_sSFr85R293t6_LFVk_3z8sb9bEMQUDYUIH18jGgYOgNHPBKyuot8r7SlivXMVbr5mVlWXMW-qVFg0DplrvGwA-RxfT7j6n90Mog9mmQ47jS8OU1oLxSvGxxaaWy6mUHFqzz93O5g9DwXxrMpMmM2oyP5pMPUJ8gspYjpuQ_6b_ob4ADjdqBQ</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Mekki, Mohammed El Amine</creator><creator>Cherif, Ahmed Mohammed</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230601</creationdate><title>Notes on K-contact manifolds as generalized Ricci solitons</title><author>Mekki, Mohammed El Amine ; Cherif, Ahmed Mohammed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-248ecb6bc0c0e782ced7a41da7dd54ad7c53fd82a65a22da1d784b2027fddb003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Fields (mathematics)</topic><topic>Geodesy</topic><topic>History of Mathematical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics Education</topic><topic>Solitary waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mekki, Mohammed El Amine</creatorcontrib><creatorcontrib>Cherif, Ahmed Mohammed</creatorcontrib><collection>CrossRef</collection><jtitle>Afrika mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mekki, Mohammed El Amine</au><au>Cherif, Ahmed Mohammed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Notes on K-contact manifolds as generalized Ricci solitons</atitle><jtitle>Afrika mathematica</jtitle><stitle>Afr. Mat</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>34</volume><issue>2</issue><artnum>21</artnum><issn>1012-9405</issn><eissn>2190-7668</eissn><abstract>Inspired by a result of Sharma in J Geom 89: 138-147, 2008, we prove that a K -contact generalized gradient soliton, satisfying some conditions, is necessarily Einstein. For the non-gradient case we show that the generalized soliton vector field is a Jacobi vector field along the geodesics of the Reeb vector field provided that the last two vector fields are orthogonal.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13370-023-01061-9</doi></addata></record>
fulltext fulltext
identifier ISSN: 1012-9405
ispartof Afrika mathematica, 2023-06, Vol.34 (2), Article 21
issn 1012-9405
2190-7668
language eng
recordid cdi_proquest_journals_2788423573
source SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Fields (mathematics)
Geodesy
History of Mathematical Sciences
Mathematics
Mathematics and Statistics
Mathematics Education
Solitary waves
title Notes on K-contact manifolds as generalized Ricci solitons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A58%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Notes%20on%20K-contact%20manifolds%20as%20generalized%20Ricci%20solitons&rft.jtitle=Afrika%20mathematica&rft.au=Mekki,%20Mohammed%20El%20Amine&rft.date=2023-06-01&rft.volume=34&rft.issue=2&rft.artnum=21&rft.issn=1012-9405&rft.eissn=2190-7668&rft_id=info:doi/10.1007/s13370-023-01061-9&rft_dat=%3Cproquest_cross%3E2788423573%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2788423573&rft_id=info:pmid/&rfr_iscdi=true