Brain tumor segmentation using extended Weiner and Laplacian lion optimization algorithm with fuzzy weighted k-mean embedding linear discriminant analysis

This paper presents an efficient skull stripping method to improve the decision-making process. Extended Weiner filtering (EWF) is used for removing the noise and enhancing the quality of images. Further, laplacian lion optimization algorithm (LXLOA) is implemented. LXLOA utilizes the Otsu’s and Tsa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2023-04, Vol.35 (10), p.7315-7338
Hauptverfasser: Vijh, Surbhi, Pandey, Hari Mohan, Gaurav, Prashant
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7338
container_issue 10
container_start_page 7315
container_title Neural computing & applications
container_volume 35
creator Vijh, Surbhi
Pandey, Hari Mohan
Gaurav, Prashant
description This paper presents an efficient skull stripping method to improve the decision-making process. Extended Weiner filtering (EWF) is used for removing the noise and enhancing the quality of images. Further, laplacian lion optimization algorithm (LXLOA) is implemented. LXLOA utilizes the Otsu’s and Tsallis entropy fitness function to determine an optimal solution. The implemented LXLOA provides a threshold value required for performing the segmentation on the brain MRI images. The extracted features are selected using fuzzy weighted k-means embedding LDA (linear discriminant analysis) method for improving training of the classification model. The proposed LXLOA is extensively tested on standard benchmark functions CEC 2017 and outperforms the existing state-of-the-art algorithm. Rigorous statistical analysis is conducted to determine the statistical significance. Three-fold performance comparison is performed by considering (a) the quality of the segmented image; (b) accuracy, sensitivity, and specificity; and (c) computational cost of convergence for finding an optimal solution. Result reveals that LXLOA gives promising results and demonstrate effective outcomes on the standard quality measures (a) accuracy (97.37%); (b) sensitivity (85.8%); (c) specificity (90%); and (d) precision (91.92%).
doi_str_mv 10.1007/s00521-021-06709-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2787982625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2787982625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-c5ca0ba59933bc3a6a6b8a21a6277fd3a715f91e31640f8a4e615ec5b155ddcc3</originalsourceid><addsrcrecordid>eNp9kc1u3CAURlGUSJkmeYGskLJ2C8Zge5mO-ieN1E2iLK1ruHaY2ngKWNOZR8nTFsuVusviwoLvHK70EXLP2UfOWPkpMCZznrFlVMnq7HhBNrwQIhNMVpdkw-pieSrENfkQwp4xVqhKbsjbZw_W0TiPk6cB-xFdhGgnR-dgXU_xT0Rn0NAXtA49BWfoDg4DaAuODktwOkQ72vNKwdBP3sbXkR7TSbv5fD7RI9r-NSbJr2zEhOHYojGLfkhS8NTYoH2SOHAxfQHDKdhwS646GALe_btvyPPXL0_b79nu57cf28ddpoUSMdNSA2tB1rUQrRagQLUV5BxUXpadEVBy2dUcBVcF6yooUHGJWrZcSmO0FjfkYfUe_PR7xhCb_TT7tERo8rIq6ypXuUypfE1pP4XgsWsOaWPwp4azZumgWTto2DJLB80xQWKFQgq7Hv1_9TvUX7_Jjyk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787982625</pqid></control><display><type>article</type><title>Brain tumor segmentation using extended Weiner and Laplacian lion optimization algorithm with fuzzy weighted k-mean embedding linear discriminant analysis</title><source>Springer Nature - Complete Springer Journals</source><creator>Vijh, Surbhi ; Pandey, Hari Mohan ; Gaurav, Prashant</creator><creatorcontrib>Vijh, Surbhi ; Pandey, Hari Mohan ; Gaurav, Prashant</creatorcontrib><description>This paper presents an efficient skull stripping method to improve the decision-making process. Extended Weiner filtering (EWF) is used for removing the noise and enhancing the quality of images. Further, laplacian lion optimization algorithm (LXLOA) is implemented. LXLOA utilizes the Otsu’s and Tsallis entropy fitness function to determine an optimal solution. The implemented LXLOA provides a threshold value required for performing the segmentation on the brain MRI images. The extracted features are selected using fuzzy weighted k-means embedding LDA (linear discriminant analysis) method for improving training of the classification model. The proposed LXLOA is extensively tested on standard benchmark functions CEC 2017 and outperforms the existing state-of-the-art algorithm. Rigorous statistical analysis is conducted to determine the statistical significance. Three-fold performance comparison is performed by considering (a) the quality of the segmented image; (b) accuracy, sensitivity, and specificity; and (c) computational cost of convergence for finding an optimal solution. Result reveals that LXLOA gives promising results and demonstrate effective outcomes on the standard quality measures (a) accuracy (97.37%); (b) sensitivity (85.8%); (c) specificity (90%); and (d) precision (91.92%).</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-021-06709-w</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Accuracy ; Algorithms ; Artificial Intelligence ; Brain ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Decision making ; Discriminant analysis ; Embedding ; emerging fuzzy hybridization systems ; Feature extraction ; fuzzy and their Hybridization ; Image enhancement ; Image Processing and Computer Vision ; Image quality ; Image segmentation ; Medical imaging ; neuro-fuzzy ; Optimization ; Optimization algorithms ; Probability and Statistics in Computer Science ; S.I. : Neuro ; S.I: Fuzzy inference ; Sensitivity ; Statistical analysis</subject><ispartof>Neural computing &amp; applications, 2023-04, Vol.35 (10), p.7315-7338</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-c5ca0ba59933bc3a6a6b8a21a6277fd3a715f91e31640f8a4e615ec5b155ddcc3</citedby><cites>FETCH-LOGICAL-c363t-c5ca0ba59933bc3a6a6b8a21a6277fd3a715f91e31640f8a4e615ec5b155ddcc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-021-06709-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-021-06709-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Vijh, Surbhi</creatorcontrib><creatorcontrib>Pandey, Hari Mohan</creatorcontrib><creatorcontrib>Gaurav, Prashant</creatorcontrib><title>Brain tumor segmentation using extended Weiner and Laplacian lion optimization algorithm with fuzzy weighted k-mean embedding linear discriminant analysis</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>This paper presents an efficient skull stripping method to improve the decision-making process. Extended Weiner filtering (EWF) is used for removing the noise and enhancing the quality of images. Further, laplacian lion optimization algorithm (LXLOA) is implemented. LXLOA utilizes the Otsu’s and Tsallis entropy fitness function to determine an optimal solution. The implemented LXLOA provides a threshold value required for performing the segmentation on the brain MRI images. The extracted features are selected using fuzzy weighted k-means embedding LDA (linear discriminant analysis) method for improving training of the classification model. The proposed LXLOA is extensively tested on standard benchmark functions CEC 2017 and outperforms the existing state-of-the-art algorithm. Rigorous statistical analysis is conducted to determine the statistical significance. Three-fold performance comparison is performed by considering (a) the quality of the segmented image; (b) accuracy, sensitivity, and specificity; and (c) computational cost of convergence for finding an optimal solution. Result reveals that LXLOA gives promising results and demonstrate effective outcomes on the standard quality measures (a) accuracy (97.37%); (b) sensitivity (85.8%); (c) specificity (90%); and (d) precision (91.92%).</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Brain</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Decision making</subject><subject>Discriminant analysis</subject><subject>Embedding</subject><subject>emerging fuzzy hybridization systems</subject><subject>Feature extraction</subject><subject>fuzzy and their Hybridization</subject><subject>Image enhancement</subject><subject>Image Processing and Computer Vision</subject><subject>Image quality</subject><subject>Image segmentation</subject><subject>Medical imaging</subject><subject>neuro-fuzzy</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Probability and Statistics in Computer Science</subject><subject>S.I. : Neuro</subject><subject>S.I: Fuzzy inference</subject><subject>Sensitivity</subject><subject>Statistical analysis</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kc1u3CAURlGUSJkmeYGskLJ2C8Zge5mO-ieN1E2iLK1ruHaY2ngKWNOZR8nTFsuVusviwoLvHK70EXLP2UfOWPkpMCZznrFlVMnq7HhBNrwQIhNMVpdkw-pieSrENfkQwp4xVqhKbsjbZw_W0TiPk6cB-xFdhGgnR-dgXU_xT0Rn0NAXtA49BWfoDg4DaAuODktwOkQ72vNKwdBP3sbXkR7TSbv5fD7RI9r-NSbJr2zEhOHYojGLfkhS8NTYoH2SOHAxfQHDKdhwS646GALe_btvyPPXL0_b79nu57cf28ddpoUSMdNSA2tB1rUQrRagQLUV5BxUXpadEVBy2dUcBVcF6yooUHGJWrZcSmO0FjfkYfUe_PR7xhCb_TT7tERo8rIq6ypXuUypfE1pP4XgsWsOaWPwp4azZumgWTto2DJLB80xQWKFQgq7Hv1_9TvUX7_Jjyk</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Vijh, Surbhi</creator><creator>Pandey, Hari Mohan</creator><creator>Gaurav, Prashant</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20230401</creationdate><title>Brain tumor segmentation using extended Weiner and Laplacian lion optimization algorithm with fuzzy weighted k-mean embedding linear discriminant analysis</title><author>Vijh, Surbhi ; Pandey, Hari Mohan ; Gaurav, Prashant</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-c5ca0ba59933bc3a6a6b8a21a6277fd3a715f91e31640f8a4e615ec5b155ddcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Brain</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Decision making</topic><topic>Discriminant analysis</topic><topic>Embedding</topic><topic>emerging fuzzy hybridization systems</topic><topic>Feature extraction</topic><topic>fuzzy and their Hybridization</topic><topic>Image enhancement</topic><topic>Image Processing and Computer Vision</topic><topic>Image quality</topic><topic>Image segmentation</topic><topic>Medical imaging</topic><topic>neuro-fuzzy</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Probability and Statistics in Computer Science</topic><topic>S.I. : Neuro</topic><topic>S.I: Fuzzy inference</topic><topic>Sensitivity</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vijh, Surbhi</creatorcontrib><creatorcontrib>Pandey, Hari Mohan</creatorcontrib><creatorcontrib>Gaurav, Prashant</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vijh, Surbhi</au><au>Pandey, Hari Mohan</au><au>Gaurav, Prashant</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brain tumor segmentation using extended Weiner and Laplacian lion optimization algorithm with fuzzy weighted k-mean embedding linear discriminant analysis</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>35</volume><issue>10</issue><spage>7315</spage><epage>7338</epage><pages>7315-7338</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>This paper presents an efficient skull stripping method to improve the decision-making process. Extended Weiner filtering (EWF) is used for removing the noise and enhancing the quality of images. Further, laplacian lion optimization algorithm (LXLOA) is implemented. LXLOA utilizes the Otsu’s and Tsallis entropy fitness function to determine an optimal solution. The implemented LXLOA provides a threshold value required for performing the segmentation on the brain MRI images. The extracted features are selected using fuzzy weighted k-means embedding LDA (linear discriminant analysis) method for improving training of the classification model. The proposed LXLOA is extensively tested on standard benchmark functions CEC 2017 and outperforms the existing state-of-the-art algorithm. Rigorous statistical analysis is conducted to determine the statistical significance. Three-fold performance comparison is performed by considering (a) the quality of the segmented image; (b) accuracy, sensitivity, and specificity; and (c) computational cost of convergence for finding an optimal solution. Result reveals that LXLOA gives promising results and demonstrate effective outcomes on the standard quality measures (a) accuracy (97.37%); (b) sensitivity (85.8%); (c) specificity (90%); and (d) precision (91.92%).</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-021-06709-w</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2023-04, Vol.35 (10), p.7315-7338
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2787982625
source Springer Nature - Complete Springer Journals
subjects Accuracy
Algorithms
Artificial Intelligence
Brain
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Decision making
Discriminant analysis
Embedding
emerging fuzzy hybridization systems
Feature extraction
fuzzy and their Hybridization
Image enhancement
Image Processing and Computer Vision
Image quality
Image segmentation
Medical imaging
neuro-fuzzy
Optimization
Optimization algorithms
Probability and Statistics in Computer Science
S.I. : Neuro
S.I: Fuzzy inference
Sensitivity
Statistical analysis
title Brain tumor segmentation using extended Weiner and Laplacian lion optimization algorithm with fuzzy weighted k-mean embedding linear discriminant analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T09%3A48%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brain%20tumor%20segmentation%20using%20extended%20Weiner%20and%20Laplacian%20lion%20optimization%20algorithm%20with%20fuzzy%20weighted%20k-mean%20embedding%20linear%20discriminant%20analysis&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Vijh,%20Surbhi&rft.date=2023-04-01&rft.volume=35&rft.issue=10&rft.spage=7315&rft.epage=7338&rft.pages=7315-7338&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-021-06709-w&rft_dat=%3Cproquest_cross%3E2787982625%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2787982625&rft_id=info:pmid/&rfr_iscdi=true