Determining the Failure Probability Gradient of the Rank-Structure System by the Fast Simulation Method

A model of a redundant repairable system of the rank structure is considered. Its time operation is determined by distributions of general form. In order to evaluate the gradient of the probability of system failure in a given time interval, the fast simulation method is proposed. A numerical exampl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cybernetics and systems analysis 2023, Vol.59 (1), p.71-81
Hauptverfasser: Kuznetsov, M. Yu, Kuznetsov, I. M., Shumska, A. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 81
container_issue 1
container_start_page 71
container_title Cybernetics and systems analysis
container_volume 59
creator Kuznetsov, M. Yu
Kuznetsov, I. M.
Shumska, A. A.
description A model of a redundant repairable system of the rank structure is considered. Its time operation is determined by distributions of general form. In order to evaluate the gradient of the probability of system failure in a given time interval, the fast simulation method is proposed. A numerical example illustrates the application of this method to assess how the repair rates of components of different types affect the reliability of the entire system.
doi_str_mv 10.1007/s10559-023-00543-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2787905006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743413756</galeid><sourcerecordid>A743413756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-bf5f3eb7f9956a48b47cf39807cea1843170a064ab55e678d92e67c01f3705a43</originalsourceid><addsrcrecordid>eNp9kU1P3DAQhqOqlUqhf6CnSD31YBiv7Tg-IigfEgjEtmfLyY6DaWKD7Ujsv8dLkBCXyoexRs8zM9JbVT8oHFIAeZQoCKEIrBgBEJwR9anao0Iy0jImP5c_NECAqeZr9S2lBwBgINu9ajjFjHFy3vmhzvdYnxk3zhHr2xg607nR5W19Hs3Goc91sK_MnfH_yDrHuc87dL1NGae6274NSLleu2keTXbB19eY78PmoPpizZjw-1vdr_6e_f5zckGubs4vT46vSM84y6SzwjLspFVKNIa3HZe9ZaoF2aOhLWdUgoGGm04IbGS7UatSeqCWSRCGs_3q5zL3MYanGVPWD2GOvqzUK9lKBQKgKdThQg1mRO28DTmavrwNTq4PHq0r_WPJGadMip3w64NQmIzPeTBzSvpyffeRXS1sH0NKEa1-jG4ycasp6F1aeklLl7T0a1paFYktUiqwHzC-3_0f6wV3KZZn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787905006</pqid></control><display><type>article</type><title>Determining the Failure Probability Gradient of the Rank-Structure System by the Fast Simulation Method</title><source>Springer Nature - Complete Springer Journals</source><creator>Kuznetsov, M. Yu ; Kuznetsov, I. M. ; Shumska, A. A.</creator><creatorcontrib>Kuznetsov, M. Yu ; Kuznetsov, I. M. ; Shumska, A. A.</creatorcontrib><description>A model of a redundant repairable system of the rank structure is considered. Its time operation is determined by distributions of general form. In order to evaluate the gradient of the probability of system failure in a given time interval, the fast simulation method is proposed. A numerical example illustrates the application of this method to assess how the repair rates of components of different types affect the reliability of the entire system.</description><identifier>ISSN: 1060-0396</identifier><identifier>EISSN: 1573-8337</identifier><identifier>DOI: 10.1007/s10559-023-00543-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Artificial Intelligence ; Component reliability ; Control ; Mathematics ; Mathematics and Statistics ; Methods ; Processor Architectures ; Simulation methods ; Software Engineering/Programming and Operating Systems ; Systems Theory</subject><ispartof>Cybernetics and systems analysis, 2023, Vol.59 (1), p.71-81</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c343t-bf5f3eb7f9956a48b47cf39807cea1843170a064ab55e678d92e67c01f3705a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10559-023-00543-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10559-023-00543-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kuznetsov, M. Yu</creatorcontrib><creatorcontrib>Kuznetsov, I. M.</creatorcontrib><creatorcontrib>Shumska, A. A.</creatorcontrib><title>Determining the Failure Probability Gradient of the Rank-Structure System by the Fast Simulation Method</title><title>Cybernetics and systems analysis</title><addtitle>Cybern Syst Anal</addtitle><description>A model of a redundant repairable system of the rank structure is considered. Its time operation is determined by distributions of general form. In order to evaluate the gradient of the probability of system failure in a given time interval, the fast simulation method is proposed. A numerical example illustrates the application of this method to assess how the repair rates of components of different types affect the reliability of the entire system.</description><subject>Analysis</subject><subject>Artificial Intelligence</subject><subject>Component reliability</subject><subject>Control</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Processor Architectures</subject><subject>Simulation methods</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Systems Theory</subject><issn>1060-0396</issn><issn>1573-8337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kU1P3DAQhqOqlUqhf6CnSD31YBiv7Tg-IigfEgjEtmfLyY6DaWKD7Ujsv8dLkBCXyoexRs8zM9JbVT8oHFIAeZQoCKEIrBgBEJwR9anao0Iy0jImP5c_NECAqeZr9S2lBwBgINu9ajjFjHFy3vmhzvdYnxk3zhHr2xg607nR5W19Hs3Goc91sK_MnfH_yDrHuc87dL1NGae6274NSLleu2keTXbB19eY78PmoPpizZjw-1vdr_6e_f5zckGubs4vT46vSM84y6SzwjLspFVKNIa3HZe9ZaoF2aOhLWdUgoGGm04IbGS7UatSeqCWSRCGs_3q5zL3MYanGVPWD2GOvqzUK9lKBQKgKdThQg1mRO28DTmavrwNTq4PHq0r_WPJGadMip3w64NQmIzPeTBzSvpyffeRXS1sH0NKEa1-jG4ycasp6F1aeklLl7T0a1paFYktUiqwHzC-3_0f6wV3KZZn</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Kuznetsov, M. Yu</creator><creator>Kuznetsov, I. M.</creator><creator>Shumska, A. A.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>JQ2</scope></search><sort><creationdate>2023</creationdate><title>Determining the Failure Probability Gradient of the Rank-Structure System by the Fast Simulation Method</title><author>Kuznetsov, M. Yu ; Kuznetsov, I. M. ; Shumska, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-bf5f3eb7f9956a48b47cf39807cea1843170a064ab55e678d92e67c01f3705a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Artificial Intelligence</topic><topic>Component reliability</topic><topic>Control</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Processor Architectures</topic><topic>Simulation methods</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuznetsov, M. Yu</creatorcontrib><creatorcontrib>Kuznetsov, I. M.</creatorcontrib><creatorcontrib>Shumska, A. A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Cybernetics and systems analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuznetsov, M. Yu</au><au>Kuznetsov, I. M.</au><au>Shumska, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determining the Failure Probability Gradient of the Rank-Structure System by the Fast Simulation Method</atitle><jtitle>Cybernetics and systems analysis</jtitle><stitle>Cybern Syst Anal</stitle><date>2023</date><risdate>2023</risdate><volume>59</volume><issue>1</issue><spage>71</spage><epage>81</epage><pages>71-81</pages><issn>1060-0396</issn><eissn>1573-8337</eissn><abstract>A model of a redundant repairable system of the rank structure is considered. Its time operation is determined by distributions of general form. In order to evaluate the gradient of the probability of system failure in a given time interval, the fast simulation method is proposed. A numerical example illustrates the application of this method to assess how the repair rates of components of different types affect the reliability of the entire system.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10559-023-00543-9</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1060-0396
ispartof Cybernetics and systems analysis, 2023, Vol.59 (1), p.71-81
issn 1060-0396
1573-8337
language eng
recordid cdi_proquest_journals_2787905006
source Springer Nature - Complete Springer Journals
subjects Analysis
Artificial Intelligence
Component reliability
Control
Mathematics
Mathematics and Statistics
Methods
Processor Architectures
Simulation methods
Software Engineering/Programming and Operating Systems
Systems Theory
title Determining the Failure Probability Gradient of the Rank-Structure System by the Fast Simulation Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T09%3A17%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determining%20the%20Failure%20Probability%20Gradient%20of%20the%20Rank-Structure%20System%20by%20the%20Fast%20Simulation%20Method&rft.jtitle=Cybernetics%20and%20systems%20analysis&rft.au=Kuznetsov,%20M.%20Yu&rft.date=2023&rft.volume=59&rft.issue=1&rft.spage=71&rft.epage=81&rft.pages=71-81&rft.issn=1060-0396&rft.eissn=1573-8337&rft_id=info:doi/10.1007/s10559-023-00543-9&rft_dat=%3Cgale_proqu%3EA743413756%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2787905006&rft_id=info:pmid/&rft_galeid=A743413756&rfr_iscdi=true