Microwave Preionization System of the MEPhIST-0 Tokamak

Microwave preionization is a common technique used for electron-cyclotron resonance assisted plasma start-up in spherical tokamaks. The purpose of this work is to test the developed MEPhIST-0 tokamak preionization system and to study the preliminary preionization plasma. The gas discharge parameters...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of atomic nuclei 2022-12, Vol.85 (12), p.2082-2087
Hauptverfasser: Alieva, A. I., Prishvitsyn, A. S., Efimov, N. E., Krat, S. A., Isakova, A. S., Kaziev, A. V., Vorobyov, G. M., Kurnaev, V. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2087
container_issue 12
container_start_page 2082
container_title Physics of atomic nuclei
container_volume 85
creator Alieva, A. I.
Prishvitsyn, A. S.
Efimov, N. E.
Krat, S. A.
Isakova, A. S.
Kaziev, A. V.
Vorobyov, G. M.
Kurnaev, V. A.
description Microwave preionization is a common technique used for electron-cyclotron resonance assisted plasma start-up in spherical tokamaks. The purpose of this work is to test the developed MEPhIST-0 tokamak preionization system and to study the preliminary preionization plasma. The gas discharge parameters are measured using Rogowski coils, optical spectroscopy, and Langmuir probes. A fast CCD camera is additionally used to capture the emission during the discharge. The results show that the preliminary plasma discharge is localized at a certain distance inside the vacuum chamber, which satisfies the condition for the existence of electron cyclotron resonance. The estimated plasma density and electron temperature are 5.5 × 10 16 m –3 and 8 eV, respectively.
doi_str_mv 10.1134/S1063778822090022
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2787904941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A741861679</galeid><sourcerecordid>A741861679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-fe877ee10be8cea137a5c225d8e0247c61400c1786c4729ae303657e7dbd26c63</originalsourceid><addsrcrecordid>eNp1kFFLwzAQx4soOKcfwLeCTz505tI2SR_HmDrYcNgJvpUsvW7d1mYmnTo_vRkVZIjk4ULu97sLf8-7BtIDCKO7FAgLOReCUpIQQumJ14GY0YAl9PXU3V07OPTPvQtrV4QAiJh0PD4pldEf8h39qcFS1-WXbFzx071tsPJ14TdL9CfD6XKUzgLiz_RaVnJ96Z0VcmPx6qd2vZf74WzwGIyfHkaD_jhQYQRNUKDgHBHIHIVCCSGXsaI0zgUSGnHFICJEARdMRZwmEkMSspgjz-c5ZYqFXe-mnbs1-m2HtslWemdqtzKjXPCEREkEjuq11EJuMCvrQjdGKndyrEqlayxK997nEQgGjCdOuD0SHNPgZ7OQO2uzUfp8zELLuqCsNVhkW1NW0uwzINkh_OxP-M6hrWMdWy_Q_H77f-kbubSCaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787904941</pqid></control><display><type>article</type><title>Microwave Preionization System of the MEPhIST-0 Tokamak</title><source>Springer Nature - Complete Springer Journals</source><creator>Alieva, A. I. ; Prishvitsyn, A. S. ; Efimov, N. E. ; Krat, S. A. ; Isakova, A. S. ; Kaziev, A. V. ; Vorobyov, G. M. ; Kurnaev, V. A.</creator><creatorcontrib>Alieva, A. I. ; Prishvitsyn, A. S. ; Efimov, N. E. ; Krat, S. A. ; Isakova, A. S. ; Kaziev, A. V. ; Vorobyov, G. M. ; Kurnaev, V. A.</creatorcontrib><description>Microwave preionization is a common technique used for electron-cyclotron resonance assisted plasma start-up in spherical tokamaks. The purpose of this work is to test the developed MEPhIST-0 tokamak preionization system and to study the preliminary preionization plasma. The gas discharge parameters are measured using Rogowski coils, optical spectroscopy, and Langmuir probes. A fast CCD camera is additionally used to capture the emission during the discharge. The results show that the preliminary plasma discharge is localized at a certain distance inside the vacuum chamber, which satisfies the condition for the existence of electron cyclotron resonance. The estimated plasma density and electron temperature are 5.5 × 10 16 m –3 and 8 eV, respectively.</description><identifier>ISSN: 1063-7788</identifier><identifier>EISSN: 1562-692X</identifier><identifier>DOI: 10.1134/S1063778822090022</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>CCD cameras ; Cyclotron resonance ; Electron cyclotron resonance ; Electron energy ; Electronic cameras ; Gas discharges ; Particle and Nuclear Physics ; Physics ; Physics and Astronomy ; Physics of Gas Discharge and Plasma ; Plasma density ; Plasma jets ; Plasma physics ; Preionization ; Spherical plasmas ; Tokamak devices ; Tokamaks ; Vacuum chambers</subject><ispartof>Physics of atomic nuclei, 2022-12, Vol.85 (12), p.2082-2087</ispartof><rights>Pleiades Publishing, Ltd. 2022. ISSN 1063-7788, Physics of Atomic Nuclei, 2022, Vol. 85, No. 12, pp. 2082–2087. © Pleiades Publishing, Ltd., 2022.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c341t-fe877ee10be8cea137a5c225d8e0247c61400c1786c4729ae303657e7dbd26c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063778822090022$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063778822090022$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Alieva, A. I.</creatorcontrib><creatorcontrib>Prishvitsyn, A. S.</creatorcontrib><creatorcontrib>Efimov, N. E.</creatorcontrib><creatorcontrib>Krat, S. A.</creatorcontrib><creatorcontrib>Isakova, A. S.</creatorcontrib><creatorcontrib>Kaziev, A. V.</creatorcontrib><creatorcontrib>Vorobyov, G. M.</creatorcontrib><creatorcontrib>Kurnaev, V. A.</creatorcontrib><title>Microwave Preionization System of the MEPhIST-0 Tokamak</title><title>Physics of atomic nuclei</title><addtitle>Phys. Atom. Nuclei</addtitle><description>Microwave preionization is a common technique used for electron-cyclotron resonance assisted plasma start-up in spherical tokamaks. The purpose of this work is to test the developed MEPhIST-0 tokamak preionization system and to study the preliminary preionization plasma. The gas discharge parameters are measured using Rogowski coils, optical spectroscopy, and Langmuir probes. A fast CCD camera is additionally used to capture the emission during the discharge. The results show that the preliminary plasma discharge is localized at a certain distance inside the vacuum chamber, which satisfies the condition for the existence of electron cyclotron resonance. The estimated plasma density and electron temperature are 5.5 × 10 16 m –3 and 8 eV, respectively.</description><subject>CCD cameras</subject><subject>Cyclotron resonance</subject><subject>Electron cyclotron resonance</subject><subject>Electron energy</subject><subject>Electronic cameras</subject><subject>Gas discharges</subject><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Physics of Gas Discharge and Plasma</subject><subject>Plasma density</subject><subject>Plasma jets</subject><subject>Plasma physics</subject><subject>Preionization</subject><subject>Spherical plasmas</subject><subject>Tokamak devices</subject><subject>Tokamaks</subject><subject>Vacuum chambers</subject><issn>1063-7788</issn><issn>1562-692X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kFFLwzAQx4soOKcfwLeCTz505tI2SR_HmDrYcNgJvpUsvW7d1mYmnTo_vRkVZIjk4ULu97sLf8-7BtIDCKO7FAgLOReCUpIQQumJ14GY0YAl9PXU3V07OPTPvQtrV4QAiJh0PD4pldEf8h39qcFS1-WXbFzx071tsPJ14TdL9CfD6XKUzgLiz_RaVnJ96Z0VcmPx6qd2vZf74WzwGIyfHkaD_jhQYQRNUKDgHBHIHIVCCSGXsaI0zgUSGnHFICJEARdMRZwmEkMSspgjz-c5ZYqFXe-mnbs1-m2HtslWemdqtzKjXPCEREkEjuq11EJuMCvrQjdGKndyrEqlayxK997nEQgGjCdOuD0SHNPgZ7OQO2uzUfp8zELLuqCsNVhkW1NW0uwzINkh_OxP-M6hrWMdWy_Q_H77f-kbubSCaA</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Alieva, A. I.</creator><creator>Prishvitsyn, A. S.</creator><creator>Efimov, N. E.</creator><creator>Krat, S. A.</creator><creator>Isakova, A. S.</creator><creator>Kaziev, A. V.</creator><creator>Vorobyov, G. M.</creator><creator>Kurnaev, V. A.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20221201</creationdate><title>Microwave Preionization System of the MEPhIST-0 Tokamak</title><author>Alieva, A. I. ; Prishvitsyn, A. S. ; Efimov, N. E. ; Krat, S. A. ; Isakova, A. S. ; Kaziev, A. V. ; Vorobyov, G. M. ; Kurnaev, V. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-fe877ee10be8cea137a5c225d8e0247c61400c1786c4729ae303657e7dbd26c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CCD cameras</topic><topic>Cyclotron resonance</topic><topic>Electron cyclotron resonance</topic><topic>Electron energy</topic><topic>Electronic cameras</topic><topic>Gas discharges</topic><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Physics of Gas Discharge and Plasma</topic><topic>Plasma density</topic><topic>Plasma jets</topic><topic>Plasma physics</topic><topic>Preionization</topic><topic>Spherical plasmas</topic><topic>Tokamak devices</topic><topic>Tokamaks</topic><topic>Vacuum chambers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alieva, A. I.</creatorcontrib><creatorcontrib>Prishvitsyn, A. S.</creatorcontrib><creatorcontrib>Efimov, N. E.</creatorcontrib><creatorcontrib>Krat, S. A.</creatorcontrib><creatorcontrib>Isakova, A. S.</creatorcontrib><creatorcontrib>Kaziev, A. V.</creatorcontrib><creatorcontrib>Vorobyov, G. M.</creatorcontrib><creatorcontrib>Kurnaev, V. A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Physics of atomic nuclei</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alieva, A. I.</au><au>Prishvitsyn, A. S.</au><au>Efimov, N. E.</au><au>Krat, S. A.</au><au>Isakova, A. S.</au><au>Kaziev, A. V.</au><au>Vorobyov, G. M.</au><au>Kurnaev, V. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microwave Preionization System of the MEPhIST-0 Tokamak</atitle><jtitle>Physics of atomic nuclei</jtitle><stitle>Phys. Atom. Nuclei</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>85</volume><issue>12</issue><spage>2082</spage><epage>2087</epage><pages>2082-2087</pages><issn>1063-7788</issn><eissn>1562-692X</eissn><abstract>Microwave preionization is a common technique used for electron-cyclotron resonance assisted plasma start-up in spherical tokamaks. The purpose of this work is to test the developed MEPhIST-0 tokamak preionization system and to study the preliminary preionization plasma. The gas discharge parameters are measured using Rogowski coils, optical spectroscopy, and Langmuir probes. A fast CCD camera is additionally used to capture the emission during the discharge. The results show that the preliminary plasma discharge is localized at a certain distance inside the vacuum chamber, which satisfies the condition for the existence of electron cyclotron resonance. The estimated plasma density and electron temperature are 5.5 × 10 16 m –3 and 8 eV, respectively.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063778822090022</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7788
ispartof Physics of atomic nuclei, 2022-12, Vol.85 (12), p.2082-2087
issn 1063-7788
1562-692X
language eng
recordid cdi_proquest_journals_2787904941
source Springer Nature - Complete Springer Journals
subjects CCD cameras
Cyclotron resonance
Electron cyclotron resonance
Electron energy
Electronic cameras
Gas discharges
Particle and Nuclear Physics
Physics
Physics and Astronomy
Physics of Gas Discharge and Plasma
Plasma density
Plasma jets
Plasma physics
Preionization
Spherical plasmas
Tokamak devices
Tokamaks
Vacuum chambers
title Microwave Preionization System of the MEPhIST-0 Tokamak
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T10%3A34%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microwave%20Preionization%20System%20of%20the%20MEPhIST-0%20Tokamak&rft.jtitle=Physics%20of%20atomic%20nuclei&rft.au=Alieva,%20A.%20I.&rft.date=2022-12-01&rft.volume=85&rft.issue=12&rft.spage=2082&rft.epage=2087&rft.pages=2082-2087&rft.issn=1063-7788&rft.eissn=1562-692X&rft_id=info:doi/10.1134/S1063778822090022&rft_dat=%3Cgale_proqu%3EA741861679%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2787904941&rft_id=info:pmid/&rft_galeid=A741861679&rfr_iscdi=true