Microwave Preionization System of the MEPhIST-0 Tokamak
Microwave preionization is a common technique used for electron-cyclotron resonance assisted plasma start-up in spherical tokamaks. The purpose of this work is to test the developed MEPhIST-0 tokamak preionization system and to study the preliminary preionization plasma. The gas discharge parameters...
Gespeichert in:
Veröffentlicht in: | Physics of atomic nuclei 2022-12, Vol.85 (12), p.2082-2087 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2087 |
---|---|
container_issue | 12 |
container_start_page | 2082 |
container_title | Physics of atomic nuclei |
container_volume | 85 |
creator | Alieva, A. I. Prishvitsyn, A. S. Efimov, N. E. Krat, S. A. Isakova, A. S. Kaziev, A. V. Vorobyov, G. M. Kurnaev, V. A. |
description | Microwave preionization is a common technique used for electron-cyclotron resonance assisted plasma start-up in spherical tokamaks. The purpose of this work is to test the developed MEPhIST-0 tokamak preionization system and to study the preliminary preionization plasma. The gas discharge parameters are measured using Rogowski coils, optical spectroscopy, and Langmuir probes. A fast CCD camera is additionally used to capture the emission during the discharge. The results show that the preliminary plasma discharge is localized at a certain distance inside the vacuum chamber, which satisfies the condition for the existence of electron cyclotron resonance. The estimated plasma density and electron temperature are 5.5 × 10
16
m
–3
and 8 eV, respectively. |
doi_str_mv | 10.1134/S1063778822090022 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2787904941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A741861679</galeid><sourcerecordid>A741861679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-fe877ee10be8cea137a5c225d8e0247c61400c1786c4729ae303657e7dbd26c63</originalsourceid><addsrcrecordid>eNp1kFFLwzAQx4soOKcfwLeCTz505tI2SR_HmDrYcNgJvpUsvW7d1mYmnTo_vRkVZIjk4ULu97sLf8-7BtIDCKO7FAgLOReCUpIQQumJ14GY0YAl9PXU3V07OPTPvQtrV4QAiJh0PD4pldEf8h39qcFS1-WXbFzx071tsPJ14TdL9CfD6XKUzgLiz_RaVnJ96Z0VcmPx6qd2vZf74WzwGIyfHkaD_jhQYQRNUKDgHBHIHIVCCSGXsaI0zgUSGnHFICJEARdMRZwmEkMSspgjz-c5ZYqFXe-mnbs1-m2HtslWemdqtzKjXPCEREkEjuq11EJuMCvrQjdGKndyrEqlayxK997nEQgGjCdOuD0SHNPgZ7OQO2uzUfp8zELLuqCsNVhkW1NW0uwzINkh_OxP-M6hrWMdWy_Q_H77f-kbubSCaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787904941</pqid></control><display><type>article</type><title>Microwave Preionization System of the MEPhIST-0 Tokamak</title><source>Springer Nature - Complete Springer Journals</source><creator>Alieva, A. I. ; Prishvitsyn, A. S. ; Efimov, N. E. ; Krat, S. A. ; Isakova, A. S. ; Kaziev, A. V. ; Vorobyov, G. M. ; Kurnaev, V. A.</creator><creatorcontrib>Alieva, A. I. ; Prishvitsyn, A. S. ; Efimov, N. E. ; Krat, S. A. ; Isakova, A. S. ; Kaziev, A. V. ; Vorobyov, G. M. ; Kurnaev, V. A.</creatorcontrib><description>Microwave preionization is a common technique used for electron-cyclotron resonance assisted plasma start-up in spherical tokamaks. The purpose of this work is to test the developed MEPhIST-0 tokamak preionization system and to study the preliminary preionization plasma. The gas discharge parameters are measured using Rogowski coils, optical spectroscopy, and Langmuir probes. A fast CCD camera is additionally used to capture the emission during the discharge. The results show that the preliminary plasma discharge is localized at a certain distance inside the vacuum chamber, which satisfies the condition for the existence of electron cyclotron resonance. The estimated plasma density and electron temperature are 5.5 × 10
16
m
–3
and 8 eV, respectively.</description><identifier>ISSN: 1063-7788</identifier><identifier>EISSN: 1562-692X</identifier><identifier>DOI: 10.1134/S1063778822090022</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>CCD cameras ; Cyclotron resonance ; Electron cyclotron resonance ; Electron energy ; Electronic cameras ; Gas discharges ; Particle and Nuclear Physics ; Physics ; Physics and Astronomy ; Physics of Gas Discharge and Plasma ; Plasma density ; Plasma jets ; Plasma physics ; Preionization ; Spherical plasmas ; Tokamak devices ; Tokamaks ; Vacuum chambers</subject><ispartof>Physics of atomic nuclei, 2022-12, Vol.85 (12), p.2082-2087</ispartof><rights>Pleiades Publishing, Ltd. 2022. ISSN 1063-7788, Physics of Atomic Nuclei, 2022, Vol. 85, No. 12, pp. 2082–2087. © Pleiades Publishing, Ltd., 2022.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c341t-fe877ee10be8cea137a5c225d8e0247c61400c1786c4729ae303657e7dbd26c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063778822090022$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063778822090022$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Alieva, A. I.</creatorcontrib><creatorcontrib>Prishvitsyn, A. S.</creatorcontrib><creatorcontrib>Efimov, N. E.</creatorcontrib><creatorcontrib>Krat, S. A.</creatorcontrib><creatorcontrib>Isakova, A. S.</creatorcontrib><creatorcontrib>Kaziev, A. V.</creatorcontrib><creatorcontrib>Vorobyov, G. M.</creatorcontrib><creatorcontrib>Kurnaev, V. A.</creatorcontrib><title>Microwave Preionization System of the MEPhIST-0 Tokamak</title><title>Physics of atomic nuclei</title><addtitle>Phys. Atom. Nuclei</addtitle><description>Microwave preionization is a common technique used for electron-cyclotron resonance assisted plasma start-up in spherical tokamaks. The purpose of this work is to test the developed MEPhIST-0 tokamak preionization system and to study the preliminary preionization plasma. The gas discharge parameters are measured using Rogowski coils, optical spectroscopy, and Langmuir probes. A fast CCD camera is additionally used to capture the emission during the discharge. The results show that the preliminary plasma discharge is localized at a certain distance inside the vacuum chamber, which satisfies the condition for the existence of electron cyclotron resonance. The estimated plasma density and electron temperature are 5.5 × 10
16
m
–3
and 8 eV, respectively.</description><subject>CCD cameras</subject><subject>Cyclotron resonance</subject><subject>Electron cyclotron resonance</subject><subject>Electron energy</subject><subject>Electronic cameras</subject><subject>Gas discharges</subject><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Physics of Gas Discharge and Plasma</subject><subject>Plasma density</subject><subject>Plasma jets</subject><subject>Plasma physics</subject><subject>Preionization</subject><subject>Spherical plasmas</subject><subject>Tokamak devices</subject><subject>Tokamaks</subject><subject>Vacuum chambers</subject><issn>1063-7788</issn><issn>1562-692X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kFFLwzAQx4soOKcfwLeCTz505tI2SR_HmDrYcNgJvpUsvW7d1mYmnTo_vRkVZIjk4ULu97sLf8-7BtIDCKO7FAgLOReCUpIQQumJ14GY0YAl9PXU3V07OPTPvQtrV4QAiJh0PD4pldEf8h39qcFS1-WXbFzx071tsPJ14TdL9CfD6XKUzgLiz_RaVnJ96Z0VcmPx6qd2vZf74WzwGIyfHkaD_jhQYQRNUKDgHBHIHIVCCSGXsaI0zgUSGnHFICJEARdMRZwmEkMSspgjz-c5ZYqFXe-mnbs1-m2HtslWemdqtzKjXPCEREkEjuq11EJuMCvrQjdGKndyrEqlayxK997nEQgGjCdOuD0SHNPgZ7OQO2uzUfp8zELLuqCsNVhkW1NW0uwzINkh_OxP-M6hrWMdWy_Q_H77f-kbubSCaA</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Alieva, A. I.</creator><creator>Prishvitsyn, A. S.</creator><creator>Efimov, N. E.</creator><creator>Krat, S. A.</creator><creator>Isakova, A. S.</creator><creator>Kaziev, A. V.</creator><creator>Vorobyov, G. M.</creator><creator>Kurnaev, V. A.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20221201</creationdate><title>Microwave Preionization System of the MEPhIST-0 Tokamak</title><author>Alieva, A. I. ; Prishvitsyn, A. S. ; Efimov, N. E. ; Krat, S. A. ; Isakova, A. S. ; Kaziev, A. V. ; Vorobyov, G. M. ; Kurnaev, V. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-fe877ee10be8cea137a5c225d8e0247c61400c1786c4729ae303657e7dbd26c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CCD cameras</topic><topic>Cyclotron resonance</topic><topic>Electron cyclotron resonance</topic><topic>Electron energy</topic><topic>Electronic cameras</topic><topic>Gas discharges</topic><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Physics of Gas Discharge and Plasma</topic><topic>Plasma density</topic><topic>Plasma jets</topic><topic>Plasma physics</topic><topic>Preionization</topic><topic>Spherical plasmas</topic><topic>Tokamak devices</topic><topic>Tokamaks</topic><topic>Vacuum chambers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alieva, A. I.</creatorcontrib><creatorcontrib>Prishvitsyn, A. S.</creatorcontrib><creatorcontrib>Efimov, N. E.</creatorcontrib><creatorcontrib>Krat, S. A.</creatorcontrib><creatorcontrib>Isakova, A. S.</creatorcontrib><creatorcontrib>Kaziev, A. V.</creatorcontrib><creatorcontrib>Vorobyov, G. M.</creatorcontrib><creatorcontrib>Kurnaev, V. A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Physics of atomic nuclei</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alieva, A. I.</au><au>Prishvitsyn, A. S.</au><au>Efimov, N. E.</au><au>Krat, S. A.</au><au>Isakova, A. S.</au><au>Kaziev, A. V.</au><au>Vorobyov, G. M.</au><au>Kurnaev, V. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microwave Preionization System of the MEPhIST-0 Tokamak</atitle><jtitle>Physics of atomic nuclei</jtitle><stitle>Phys. Atom. Nuclei</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>85</volume><issue>12</issue><spage>2082</spage><epage>2087</epage><pages>2082-2087</pages><issn>1063-7788</issn><eissn>1562-692X</eissn><abstract>Microwave preionization is a common technique used for electron-cyclotron resonance assisted plasma start-up in spherical tokamaks. The purpose of this work is to test the developed MEPhIST-0 tokamak preionization system and to study the preliminary preionization plasma. The gas discharge parameters are measured using Rogowski coils, optical spectroscopy, and Langmuir probes. A fast CCD camera is additionally used to capture the emission during the discharge. The results show that the preliminary plasma discharge is localized at a certain distance inside the vacuum chamber, which satisfies the condition for the existence of electron cyclotron resonance. The estimated plasma density and electron temperature are 5.5 × 10
16
m
–3
and 8 eV, respectively.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063778822090022</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7788 |
ispartof | Physics of atomic nuclei, 2022-12, Vol.85 (12), p.2082-2087 |
issn | 1063-7788 1562-692X |
language | eng |
recordid | cdi_proquest_journals_2787904941 |
source | Springer Nature - Complete Springer Journals |
subjects | CCD cameras Cyclotron resonance Electron cyclotron resonance Electron energy Electronic cameras Gas discharges Particle and Nuclear Physics Physics Physics and Astronomy Physics of Gas Discharge and Plasma Plasma density Plasma jets Plasma physics Preionization Spherical plasmas Tokamak devices Tokamaks Vacuum chambers |
title | Microwave Preionization System of the MEPhIST-0 Tokamak |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T10%3A34%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microwave%20Preionization%20System%20of%20the%20MEPhIST-0%20Tokamak&rft.jtitle=Physics%20of%20atomic%20nuclei&rft.au=Alieva,%20A.%20I.&rft.date=2022-12-01&rft.volume=85&rft.issue=12&rft.spage=2082&rft.epage=2087&rft.pages=2082-2087&rft.issn=1063-7788&rft.eissn=1562-692X&rft_id=info:doi/10.1134/S1063778822090022&rft_dat=%3Cgale_proqu%3EA741861679%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2787904941&rft_id=info:pmid/&rft_galeid=A741861679&rfr_iscdi=true |