A Note on Approximating the Symplectic Spectrum

The symplectic eigenvalues play a significant role in finite mode quantum information theory, and Williamson normal form proves to be a valuable tool in this area. Understanding the symplectic spectrum of a Gaussian Covariance Operator is a crucial task. Recently, an infinite-dimensional analogue of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-07
Hauptverfasser: Kumar, V B Kiran, Anmary Tonny
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kumar, V B Kiran
Anmary Tonny
description The symplectic eigenvalues play a significant role in finite mode quantum information theory, and Williamson normal form proves to be a valuable tool in this area. Understanding the symplectic spectrum of a Gaussian Covariance Operator is a crucial task. Recently, an infinite-dimensional analogue of Williamson Normal form was discovered, which has been instrumental in studying infinite mode Gaussian quantum states. However, most existing results pertain to finite-dimensional operators, leaving a dearth of literature in the infinite-dimensional context. The focus of this article is on employing approximation techniques to estimate the symplectic spectrum of certain infinite-dimensional operators. These techniques are well-suited for a particular class of operators, including specific types of infinite mode Gaussian Covariance Operators. Our approach involves computing the Williamson Normal form and deriving bounds for the symplectic spectrum of these operators. As a practical application, we explicitly compute the symplectic spectrum of Gaussian Covariance Operators. Through this research, we aim to contribute to the understanding of symplectic eigenvalues in the context of infinite-dimensional operators, opening new avenues for exploration in quantum information theory and related fields.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2787737232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2787737232</sourcerecordid><originalsourceid>FETCH-proquest_journals_27877372323</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQd1Twyy9JVcjPU3AsKCjKr8jMTSzJzEtXKMlIVQiuzC3ISU0uyUxWCC4A0kWluTwMrGmJOcWpvFCam0HZzTXE2UMXqLewNLW4JD4rv7QoDygVb2RuYW5ubG5kbGRMnCoAEK4ynA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787737232</pqid></control><display><type>article</type><title>A Note on Approximating the Symplectic Spectrum</title><source>Free E- Journals</source><creator>Kumar, V B Kiran ; Anmary Tonny</creator><creatorcontrib>Kumar, V B Kiran ; Anmary Tonny</creatorcontrib><description>The symplectic eigenvalues play a significant role in finite mode quantum information theory, and Williamson normal form proves to be a valuable tool in this area. Understanding the symplectic spectrum of a Gaussian Covariance Operator is a crucial task. Recently, an infinite-dimensional analogue of Williamson Normal form was discovered, which has been instrumental in studying infinite mode Gaussian quantum states. However, most existing results pertain to finite-dimensional operators, leaving a dearth of literature in the infinite-dimensional context. The focus of this article is on employing approximation techniques to estimate the symplectic spectrum of certain infinite-dimensional operators. These techniques are well-suited for a particular class of operators, including specific types of infinite mode Gaussian Covariance Operators. Our approach involves computing the Williamson Normal form and deriving bounds for the symplectic spectrum of these operators. As a practical application, we explicitly compute the symplectic spectrum of Gaussian Covariance Operators. Through this research, we aim to contribute to the understanding of symplectic eigenvalues in the context of infinite-dimensional operators, opening new avenues for exploration in quantum information theory and related fields.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Canonical forms ; Eigenvalues ; Equivalence ; Hilbert space ; Information theory ; Operators</subject><ispartof>arXiv.org, 2023-07</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Kumar, V B Kiran</creatorcontrib><creatorcontrib>Anmary Tonny</creatorcontrib><title>A Note on Approximating the Symplectic Spectrum</title><title>arXiv.org</title><description>The symplectic eigenvalues play a significant role in finite mode quantum information theory, and Williamson normal form proves to be a valuable tool in this area. Understanding the symplectic spectrum of a Gaussian Covariance Operator is a crucial task. Recently, an infinite-dimensional analogue of Williamson Normal form was discovered, which has been instrumental in studying infinite mode Gaussian quantum states. However, most existing results pertain to finite-dimensional operators, leaving a dearth of literature in the infinite-dimensional context. The focus of this article is on employing approximation techniques to estimate the symplectic spectrum of certain infinite-dimensional operators. These techniques are well-suited for a particular class of operators, including specific types of infinite mode Gaussian Covariance Operators. Our approach involves computing the Williamson Normal form and deriving bounds for the symplectic spectrum of these operators. As a practical application, we explicitly compute the symplectic spectrum of Gaussian Covariance Operators. Through this research, we aim to contribute to the understanding of symplectic eigenvalues in the context of infinite-dimensional operators, opening new avenues for exploration in quantum information theory and related fields.</description><subject>Algorithms</subject><subject>Canonical forms</subject><subject>Eigenvalues</subject><subject>Equivalence</subject><subject>Hilbert space</subject><subject>Information theory</subject><subject>Operators</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQd1Twyy9JVcjPU3AsKCjKr8jMTSzJzEtXKMlIVQiuzC3ISU0uyUxWCC4A0kWluTwMrGmJOcWpvFCam0HZzTXE2UMXqLewNLW4JD4rv7QoDygVb2RuYW5ubG5kbGRMnCoAEK4ynA</recordid><startdate>20230729</startdate><enddate>20230729</enddate><creator>Kumar, V B Kiran</creator><creator>Anmary Tonny</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230729</creationdate><title>A Note on Approximating the Symplectic Spectrum</title><author>Kumar, V B Kiran ; Anmary Tonny</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27877372323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Canonical forms</topic><topic>Eigenvalues</topic><topic>Equivalence</topic><topic>Hilbert space</topic><topic>Information theory</topic><topic>Operators</topic><toplevel>online_resources</toplevel><creatorcontrib>Kumar, V B Kiran</creatorcontrib><creatorcontrib>Anmary Tonny</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, V B Kiran</au><au>Anmary Tonny</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Note on Approximating the Symplectic Spectrum</atitle><jtitle>arXiv.org</jtitle><date>2023-07-29</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>The symplectic eigenvalues play a significant role in finite mode quantum information theory, and Williamson normal form proves to be a valuable tool in this area. Understanding the symplectic spectrum of a Gaussian Covariance Operator is a crucial task. Recently, an infinite-dimensional analogue of Williamson Normal form was discovered, which has been instrumental in studying infinite mode Gaussian quantum states. However, most existing results pertain to finite-dimensional operators, leaving a dearth of literature in the infinite-dimensional context. The focus of this article is on employing approximation techniques to estimate the symplectic spectrum of certain infinite-dimensional operators. These techniques are well-suited for a particular class of operators, including specific types of infinite mode Gaussian Covariance Operators. Our approach involves computing the Williamson Normal form and deriving bounds for the symplectic spectrum of these operators. As a practical application, we explicitly compute the symplectic spectrum of Gaussian Covariance Operators. Through this research, we aim to contribute to the understanding of symplectic eigenvalues in the context of infinite-dimensional operators, opening new avenues for exploration in quantum information theory and related fields.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2787737232
source Free E- Journals
subjects Algorithms
Canonical forms
Eigenvalues
Equivalence
Hilbert space
Information theory
Operators
title A Note on Approximating the Symplectic Spectrum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A48%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Note%20on%20Approximating%20the%20Symplectic%20Spectrum&rft.jtitle=arXiv.org&rft.au=Kumar,%20V%20B%20Kiran&rft.date=2023-07-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2787737232%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2787737232&rft_id=info:pmid/&rfr_iscdi=true