TemporalMaxer: Maximize Temporal Context with only Max Pooling for Temporal Action Localization

Temporal Action Localization (TAL) is a challenging task in video understanding that aims to identify and localize actions within a video sequence. Recent studies have emphasized the importance of applying long-term temporal context modeling (TCM) blocks to the extracted video clip features such as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-03
Hauptverfasser: Tang, Tuan N, Kim, Kwonyoung, Sohn, Kwanghoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Tang, Tuan N
Kim, Kwonyoung
Sohn, Kwanghoon
description Temporal Action Localization (TAL) is a challenging task in video understanding that aims to identify and localize actions within a video sequence. Recent studies have emphasized the importance of applying long-term temporal context modeling (TCM) blocks to the extracted video clip features such as employing complex self-attention mechanisms. In this paper, we present the simplest method ever to address this task and argue that the extracted video clip features are already informative to achieve outstanding performance without sophisticated architectures. To this end, we introduce TemporalMaxer, which minimizes long-term temporal context modeling while maximizing information from the extracted video clip features with a basic, parameter-free, and local region operating max-pooling block. Picking out only the most critical information for adjacent and local clip embeddings, this block results in a more efficient TAL model. We demonstrate that TemporalMaxer outperforms other state-of-the-art methods that utilize long-term TCM such as self-attention on various TAL datasets while requiring significantly fewer parameters and computational resources. The code for our approach is publicly available at https://github.com/TuanTNG/TemporalMaxer
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2787736211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2787736211</sourcerecordid><originalsourceid>FETCH-proquest_journals_27877362113</originalsourceid><addsrcrecordid>eNqNik8LgjAYh0cQJOV3eKGzoFv-oVtI0aGgQ3cZMmsy99o2yfz0KRRdOz38fs8zIx5lLAqyDaUL4ltbh2FIk5TGMfNIcRVNi4arM--F2cII2chBwPeHHLUTvYOndHdArV5TAxdEJfUNKjS_dFc6iRpOWHIlBz6NFZlXXFnhf7gk68P-mh-D1uCjE9YVNXZGj6qgaZamLKFRxP6r3snbRNI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787736211</pqid></control><display><type>article</type><title>TemporalMaxer: Maximize Temporal Context with only Max Pooling for Temporal Action Localization</title><source>Free E- Journals</source><creator>Tang, Tuan N ; Kim, Kwonyoung ; Sohn, Kwanghoon</creator><creatorcontrib>Tang, Tuan N ; Kim, Kwonyoung ; Sohn, Kwanghoon</creatorcontrib><description>Temporal Action Localization (TAL) is a challenging task in video understanding that aims to identify and localize actions within a video sequence. Recent studies have emphasized the importance of applying long-term temporal context modeling (TCM) blocks to the extracted video clip features such as employing complex self-attention mechanisms. In this paper, we present the simplest method ever to address this task and argue that the extracted video clip features are already informative to achieve outstanding performance without sophisticated architectures. To this end, we introduce TemporalMaxer, which minimizes long-term temporal context modeling while maximizing information from the extracted video clip features with a basic, parameter-free, and local region operating max-pooling block. Picking out only the most critical information for adjacent and local clip embeddings, this block results in a more efficient TAL model. We demonstrate that TemporalMaxer outperforms other state-of-the-art methods that utilize long-term TCM such as self-attention on various TAL datasets while requiring significantly fewer parameters and computational resources. The code for our approach is publicly available at https://github.com/TuanTNG/TemporalMaxer</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Context ; Feature extraction ; Localization ; Mathematical models ; Modelling ; Parameters</subject><ispartof>arXiv.org, 2023-03</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>782,786</link.rule.ids></links><search><creatorcontrib>Tang, Tuan N</creatorcontrib><creatorcontrib>Kim, Kwonyoung</creatorcontrib><creatorcontrib>Sohn, Kwanghoon</creatorcontrib><title>TemporalMaxer: Maximize Temporal Context with only Max Pooling for Temporal Action Localization</title><title>arXiv.org</title><description>Temporal Action Localization (TAL) is a challenging task in video understanding that aims to identify and localize actions within a video sequence. Recent studies have emphasized the importance of applying long-term temporal context modeling (TCM) blocks to the extracted video clip features such as employing complex self-attention mechanisms. In this paper, we present the simplest method ever to address this task and argue that the extracted video clip features are already informative to achieve outstanding performance without sophisticated architectures. To this end, we introduce TemporalMaxer, which minimizes long-term temporal context modeling while maximizing information from the extracted video clip features with a basic, parameter-free, and local region operating max-pooling block. Picking out only the most critical information for adjacent and local clip embeddings, this block results in a more efficient TAL model. We demonstrate that TemporalMaxer outperforms other state-of-the-art methods that utilize long-term TCM such as self-attention on various TAL datasets while requiring significantly fewer parameters and computational resources. The code for our approach is publicly available at https://github.com/TuanTNG/TemporalMaxer</description><subject>Context</subject><subject>Feature extraction</subject><subject>Localization</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Parameters</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNik8LgjAYh0cQJOV3eKGzoFv-oVtI0aGgQ3cZMmsy99o2yfz0KRRdOz38fs8zIx5lLAqyDaUL4ltbh2FIk5TGMfNIcRVNi4arM--F2cII2chBwPeHHLUTvYOndHdArV5TAxdEJfUNKjS_dFc6iRpOWHIlBz6NFZlXXFnhf7gk68P-mh-D1uCjE9YVNXZGj6qgaZamLKFRxP6r3snbRNI</recordid><startdate>20230316</startdate><enddate>20230316</enddate><creator>Tang, Tuan N</creator><creator>Kim, Kwonyoung</creator><creator>Sohn, Kwanghoon</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230316</creationdate><title>TemporalMaxer: Maximize Temporal Context with only Max Pooling for Temporal Action Localization</title><author>Tang, Tuan N ; Kim, Kwonyoung ; Sohn, Kwanghoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27877362113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Context</topic><topic>Feature extraction</topic><topic>Localization</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Parameters</topic><toplevel>online_resources</toplevel><creatorcontrib>Tang, Tuan N</creatorcontrib><creatorcontrib>Kim, Kwonyoung</creatorcontrib><creatorcontrib>Sohn, Kwanghoon</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Tuan N</au><au>Kim, Kwonyoung</au><au>Sohn, Kwanghoon</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>TemporalMaxer: Maximize Temporal Context with only Max Pooling for Temporal Action Localization</atitle><jtitle>arXiv.org</jtitle><date>2023-03-16</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Temporal Action Localization (TAL) is a challenging task in video understanding that aims to identify and localize actions within a video sequence. Recent studies have emphasized the importance of applying long-term temporal context modeling (TCM) blocks to the extracted video clip features such as employing complex self-attention mechanisms. In this paper, we present the simplest method ever to address this task and argue that the extracted video clip features are already informative to achieve outstanding performance without sophisticated architectures. To this end, we introduce TemporalMaxer, which minimizes long-term temporal context modeling while maximizing information from the extracted video clip features with a basic, parameter-free, and local region operating max-pooling block. Picking out only the most critical information for adjacent and local clip embeddings, this block results in a more efficient TAL model. We demonstrate that TemporalMaxer outperforms other state-of-the-art methods that utilize long-term TCM such as self-attention on various TAL datasets while requiring significantly fewer parameters and computational resources. The code for our approach is publicly available at https://github.com/TuanTNG/TemporalMaxer</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2787736211
source Free E- Journals
subjects Context
Feature extraction
Localization
Mathematical models
Modelling
Parameters
title TemporalMaxer: Maximize Temporal Context with only Max Pooling for Temporal Action Localization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T18%3A57%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=TemporalMaxer:%20Maximize%20Temporal%20Context%20with%20only%20Max%20Pooling%20for%20Temporal%20Action%20Localization&rft.jtitle=arXiv.org&rft.au=Tang,%20Tuan%20N&rft.date=2023-03-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2787736211%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2787736211&rft_id=info:pmid/&rfr_iscdi=true