Performance evaluation of Bootstrap-Linear recurrent formula and Bootstrap-Vector singular spectrum analysis in the presence of structural break
The Singular Spectrum Analysis (SSA) forecasting method has been used widely recently. SSA has characteristics and advantages in decomposing data into trends, oscillations, and noise, which are for forecasting. Forecasting withSSA can be done by several ways e.g. Linear Recurrent Formula (LRF), Vect...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2556 |
creator | Sasmita, Yoga Kuswanto, Heri Prastyo, Dedy D. Otok, Bambang W. |
description | The Singular Spectrum Analysis (SSA) forecasting method has been used widely recently. SSA has characteristics and advantages in decomposing data into trends, oscillations, and noise, which are for forecasting. Forecasting withSSA can be done by several ways e.g. Linear Recurrent Formula (LRF), Vector, and Simultaneous. The Bootstrapping process is implemented in those forecasting methods to increase the accuracy and builds the interval forecast. This study focuses on testing the sensitivity and accuracy of the combination of the Bootstrap-LRF and Bootstrap-Vector methods. The tests are applied to data that contains structural breaks, namely Indonesia's trade monthly data (exports and imports) from 1993 to 2019. The test results show that Bootstrap-Vector has a smaller forecasting range and is more accurate than Bootstrap-LRF in long-horizon forecast. Moreover, the Bootstrap-Vector is more stable in the presence of structural break in the data, meaning that this method is less sensitive to structural changes. Meanwhile, Bootstrap-LRF is more accurate in short horizon forecast. |
doi_str_mv | 10.1063/5.0109951 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2787722140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2787722140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2081-5bb41fd02d098a9ec40dea697b2ecb0b9642da7c24dde0f95b7c754e69f261413</originalsourceid><addsrcrecordid>eNpNkE1OwzAQhS0EEqWw4AaW2CGl2I4d10uo-JMqwQIQu8hxJpCSJmFsI_UWHBkXumA1o5nvzRs9Qk45m3FW5BdqxjgzRvE9MuFK8UwXvNgnE8aMzITMXw_JkfcrxoTRej4h34-AzYBr2zug8GW7aEM79HRo6NUwBB_Qjtmy7cEiRXAREfpAt4rYWWr7-h_2Ai4MSH3bv6VlasY0wLhOmO02vvW07Wl4BzoieNgaJpckjS5EtB2tEOzHMTlobOfhZFen5Pnm-mlxly0fbu8Xl8vMCTbnmaoqyZuaiZqZuTXgJKvBFkZXAlzFKlNIUVvthKxrYI1RlXZaSShMIwoueT4lZ393Rxw-I_hQroaI6VFfCj3XWgguWaLO_yjv2vCbTDliu7a4KTkrt4mXqtwlnv8AnTV2wg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2787722140</pqid></control><display><type>conference_proceeding</type><title>Performance evaluation of Bootstrap-Linear recurrent formula and Bootstrap-Vector singular spectrum analysis in the presence of structural break</title><source>AIP Journals Complete</source><creator>Sasmita, Yoga ; Kuswanto, Heri ; Prastyo, Dedy D. ; Otok, Bambang W.</creator><contributor>Ariyanti, Nur Aeni ; Fauzi, Fika ; Sukoco, Heru ; Kuswandi, Paramita Cahyaningrum ; Pertiwi, Kartika Ratna</contributor><creatorcontrib>Sasmita, Yoga ; Kuswanto, Heri ; Prastyo, Dedy D. ; Otok, Bambang W. ; Ariyanti, Nur Aeni ; Fauzi, Fika ; Sukoco, Heru ; Kuswandi, Paramita Cahyaningrum ; Pertiwi, Kartika Ratna</creatorcontrib><description>The Singular Spectrum Analysis (SSA) forecasting method has been used widely recently. SSA has characteristics and advantages in decomposing data into trends, oscillations, and noise, which are for forecasting. Forecasting withSSA can be done by several ways e.g. Linear Recurrent Formula (LRF), Vector, and Simultaneous. The Bootstrapping process is implemented in those forecasting methods to increase the accuracy and builds the interval forecast. This study focuses on testing the sensitivity and accuracy of the combination of the Bootstrap-LRF and Bootstrap-Vector methods. The tests are applied to data that contains structural breaks, namely Indonesia's trade monthly data (exports and imports) from 1993 to 2019. The test results show that Bootstrap-Vector has a smaller forecasting range and is more accurate than Bootstrap-LRF in long-horizon forecast. Moreover, the Bootstrap-Vector is more stable in the presence of structural break in the data, meaning that this method is less sensitive to structural changes. Meanwhile, Bootstrap-LRF is more accurate in short horizon forecast.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0109951</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Accuracy ; Forecasting ; Horizon ; International trade ; Performance evaluation ; Spectrum analysis</subject><ispartof>AIP conference proceedings, 2023, Vol.2556 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2081-5bb41fd02d098a9ec40dea697b2ecb0b9642da7c24dde0f95b7c754e69f261413</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0109951$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4510,23929,23930,25139,27923,27924,76155</link.rule.ids></links><search><contributor>Ariyanti, Nur Aeni</contributor><contributor>Fauzi, Fika</contributor><contributor>Sukoco, Heru</contributor><contributor>Kuswandi, Paramita Cahyaningrum</contributor><contributor>Pertiwi, Kartika Ratna</contributor><creatorcontrib>Sasmita, Yoga</creatorcontrib><creatorcontrib>Kuswanto, Heri</creatorcontrib><creatorcontrib>Prastyo, Dedy D.</creatorcontrib><creatorcontrib>Otok, Bambang W.</creatorcontrib><title>Performance evaluation of Bootstrap-Linear recurrent formula and Bootstrap-Vector singular spectrum analysis in the presence of structural break</title><title>AIP conference proceedings</title><description>The Singular Spectrum Analysis (SSA) forecasting method has been used widely recently. SSA has characteristics and advantages in decomposing data into trends, oscillations, and noise, which are for forecasting. Forecasting withSSA can be done by several ways e.g. Linear Recurrent Formula (LRF), Vector, and Simultaneous. The Bootstrapping process is implemented in those forecasting methods to increase the accuracy and builds the interval forecast. This study focuses on testing the sensitivity and accuracy of the combination of the Bootstrap-LRF and Bootstrap-Vector methods. The tests are applied to data that contains structural breaks, namely Indonesia's trade monthly data (exports and imports) from 1993 to 2019. The test results show that Bootstrap-Vector has a smaller forecasting range and is more accurate than Bootstrap-LRF in long-horizon forecast. Moreover, the Bootstrap-Vector is more stable in the presence of structural break in the data, meaning that this method is less sensitive to structural changes. Meanwhile, Bootstrap-LRF is more accurate in short horizon forecast.</description><subject>Accuracy</subject><subject>Forecasting</subject><subject>Horizon</subject><subject>International trade</subject><subject>Performance evaluation</subject><subject>Spectrum analysis</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkE1OwzAQhS0EEqWw4AaW2CGl2I4d10uo-JMqwQIQu8hxJpCSJmFsI_UWHBkXumA1o5nvzRs9Qk45m3FW5BdqxjgzRvE9MuFK8UwXvNgnE8aMzITMXw_JkfcrxoTRej4h34-AzYBr2zug8GW7aEM79HRo6NUwBB_Qjtmy7cEiRXAREfpAt4rYWWr7-h_2Ai4MSH3bv6VlasY0wLhOmO02vvW07Wl4BzoieNgaJpckjS5EtB2tEOzHMTlobOfhZFen5Pnm-mlxly0fbu8Xl8vMCTbnmaoqyZuaiZqZuTXgJKvBFkZXAlzFKlNIUVvthKxrYI1RlXZaSShMIwoueT4lZ393Rxw-I_hQroaI6VFfCj3XWgguWaLO_yjv2vCbTDliu7a4KTkrt4mXqtwlnv8AnTV2wg</recordid><startdate>20230317</startdate><enddate>20230317</enddate><creator>Sasmita, Yoga</creator><creator>Kuswanto, Heri</creator><creator>Prastyo, Dedy D.</creator><creator>Otok, Bambang W.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230317</creationdate><title>Performance evaluation of Bootstrap-Linear recurrent formula and Bootstrap-Vector singular spectrum analysis in the presence of structural break</title><author>Sasmita, Yoga ; Kuswanto, Heri ; Prastyo, Dedy D. ; Otok, Bambang W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2081-5bb41fd02d098a9ec40dea697b2ecb0b9642da7c24dde0f95b7c754e69f261413</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Forecasting</topic><topic>Horizon</topic><topic>International trade</topic><topic>Performance evaluation</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sasmita, Yoga</creatorcontrib><creatorcontrib>Kuswanto, Heri</creatorcontrib><creatorcontrib>Prastyo, Dedy D.</creatorcontrib><creatorcontrib>Otok, Bambang W.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sasmita, Yoga</au><au>Kuswanto, Heri</au><au>Prastyo, Dedy D.</au><au>Otok, Bambang W.</au><au>Ariyanti, Nur Aeni</au><au>Fauzi, Fika</au><au>Sukoco, Heru</au><au>Kuswandi, Paramita Cahyaningrum</au><au>Pertiwi, Kartika Ratna</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Performance evaluation of Bootstrap-Linear recurrent formula and Bootstrap-Vector singular spectrum analysis in the presence of structural break</atitle><btitle>AIP conference proceedings</btitle><date>2023-03-17</date><risdate>2023</risdate><volume>2556</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The Singular Spectrum Analysis (SSA) forecasting method has been used widely recently. SSA has characteristics and advantages in decomposing data into trends, oscillations, and noise, which are for forecasting. Forecasting withSSA can be done by several ways e.g. Linear Recurrent Formula (LRF), Vector, and Simultaneous. The Bootstrapping process is implemented in those forecasting methods to increase the accuracy and builds the interval forecast. This study focuses on testing the sensitivity and accuracy of the combination of the Bootstrap-LRF and Bootstrap-Vector methods. The tests are applied to data that contains structural breaks, namely Indonesia's trade monthly data (exports and imports) from 1993 to 2019. The test results show that Bootstrap-Vector has a smaller forecasting range and is more accurate than Bootstrap-LRF in long-horizon forecast. Moreover, the Bootstrap-Vector is more stable in the presence of structural break in the data, meaning that this method is less sensitive to structural changes. Meanwhile, Bootstrap-LRF is more accurate in short horizon forecast.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0109951</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2023, Vol.2556 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2787722140 |
source | AIP Journals Complete |
subjects | Accuracy Forecasting Horizon International trade Performance evaluation Spectrum analysis |
title | Performance evaluation of Bootstrap-Linear recurrent formula and Bootstrap-Vector singular spectrum analysis in the presence of structural break |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T04%3A16%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Performance%20evaluation%20of%20Bootstrap-Linear%20recurrent%20formula%20and%20Bootstrap-Vector%20singular%20spectrum%20analysis%20in%20the%20presence%20of%20structural%20break&rft.btitle=AIP%20conference%20proceedings&rft.au=Sasmita,%20Yoga&rft.date=2023-03-17&rft.volume=2556&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0109951&rft_dat=%3Cproquest_scita%3E2787722140%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2787722140&rft_id=info:pmid/&rfr_iscdi=true |