Performance evaluation of Bootstrap-Linear recurrent formula and Bootstrap-Vector singular spectrum analysis in the presence of structural break

The Singular Spectrum Analysis (SSA) forecasting method has been used widely recently. SSA has characteristics and advantages in decomposing data into trends, oscillations, and noise, which are for forecasting. Forecasting withSSA can be done by several ways e.g. Linear Recurrent Formula (LRF), Vect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sasmita, Yoga, Kuswanto, Heri, Prastyo, Dedy D., Otok, Bambang W.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2556
creator Sasmita, Yoga
Kuswanto, Heri
Prastyo, Dedy D.
Otok, Bambang W.
description The Singular Spectrum Analysis (SSA) forecasting method has been used widely recently. SSA has characteristics and advantages in decomposing data into trends, oscillations, and noise, which are for forecasting. Forecasting withSSA can be done by several ways e.g. Linear Recurrent Formula (LRF), Vector, and Simultaneous. The Bootstrapping process is implemented in those forecasting methods to increase the accuracy and builds the interval forecast. This study focuses on testing the sensitivity and accuracy of the combination of the Bootstrap-LRF and Bootstrap-Vector methods. The tests are applied to data that contains structural breaks, namely Indonesia's trade monthly data (exports and imports) from 1993 to 2019. The test results show that Bootstrap-Vector has a smaller forecasting range and is more accurate than Bootstrap-LRF in long-horizon forecast. Moreover, the Bootstrap-Vector is more stable in the presence of structural break in the data, meaning that this method is less sensitive to structural changes. Meanwhile, Bootstrap-LRF is more accurate in short horizon forecast.
doi_str_mv 10.1063/5.0109951
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2787722140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2787722140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2081-5bb41fd02d098a9ec40dea697b2ecb0b9642da7c24dde0f95b7c754e69f261413</originalsourceid><addsrcrecordid>eNpNkE1OwzAQhS0EEqWw4AaW2CGl2I4d10uo-JMqwQIQu8hxJpCSJmFsI_UWHBkXumA1o5nvzRs9Qk45m3FW5BdqxjgzRvE9MuFK8UwXvNgnE8aMzITMXw_JkfcrxoTRej4h34-AzYBr2zug8GW7aEM79HRo6NUwBB_Qjtmy7cEiRXAREfpAt4rYWWr7-h_2Ai4MSH3bv6VlasY0wLhOmO02vvW07Wl4BzoieNgaJpckjS5EtB2tEOzHMTlobOfhZFen5Pnm-mlxly0fbu8Xl8vMCTbnmaoqyZuaiZqZuTXgJKvBFkZXAlzFKlNIUVvthKxrYI1RlXZaSShMIwoueT4lZ393Rxw-I_hQroaI6VFfCj3XWgguWaLO_yjv2vCbTDliu7a4KTkrt4mXqtwlnv8AnTV2wg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2787722140</pqid></control><display><type>conference_proceeding</type><title>Performance evaluation of Bootstrap-Linear recurrent formula and Bootstrap-Vector singular spectrum analysis in the presence of structural break</title><source>AIP Journals Complete</source><creator>Sasmita, Yoga ; Kuswanto, Heri ; Prastyo, Dedy D. ; Otok, Bambang W.</creator><contributor>Ariyanti, Nur Aeni ; Fauzi, Fika ; Sukoco, Heru ; Kuswandi, Paramita Cahyaningrum ; Pertiwi, Kartika Ratna</contributor><creatorcontrib>Sasmita, Yoga ; Kuswanto, Heri ; Prastyo, Dedy D. ; Otok, Bambang W. ; Ariyanti, Nur Aeni ; Fauzi, Fika ; Sukoco, Heru ; Kuswandi, Paramita Cahyaningrum ; Pertiwi, Kartika Ratna</creatorcontrib><description>The Singular Spectrum Analysis (SSA) forecasting method has been used widely recently. SSA has characteristics and advantages in decomposing data into trends, oscillations, and noise, which are for forecasting. Forecasting withSSA can be done by several ways e.g. Linear Recurrent Formula (LRF), Vector, and Simultaneous. The Bootstrapping process is implemented in those forecasting methods to increase the accuracy and builds the interval forecast. This study focuses on testing the sensitivity and accuracy of the combination of the Bootstrap-LRF and Bootstrap-Vector methods. The tests are applied to data that contains structural breaks, namely Indonesia's trade monthly data (exports and imports) from 1993 to 2019. The test results show that Bootstrap-Vector has a smaller forecasting range and is more accurate than Bootstrap-LRF in long-horizon forecast. Moreover, the Bootstrap-Vector is more stable in the presence of structural break in the data, meaning that this method is less sensitive to structural changes. Meanwhile, Bootstrap-LRF is more accurate in short horizon forecast.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0109951</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Accuracy ; Forecasting ; Horizon ; International trade ; Performance evaluation ; Spectrum analysis</subject><ispartof>AIP conference proceedings, 2023, Vol.2556 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2081-5bb41fd02d098a9ec40dea697b2ecb0b9642da7c24dde0f95b7c754e69f261413</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0109951$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4510,23929,23930,25139,27923,27924,76155</link.rule.ids></links><search><contributor>Ariyanti, Nur Aeni</contributor><contributor>Fauzi, Fika</contributor><contributor>Sukoco, Heru</contributor><contributor>Kuswandi, Paramita Cahyaningrum</contributor><contributor>Pertiwi, Kartika Ratna</contributor><creatorcontrib>Sasmita, Yoga</creatorcontrib><creatorcontrib>Kuswanto, Heri</creatorcontrib><creatorcontrib>Prastyo, Dedy D.</creatorcontrib><creatorcontrib>Otok, Bambang W.</creatorcontrib><title>Performance evaluation of Bootstrap-Linear recurrent formula and Bootstrap-Vector singular spectrum analysis in the presence of structural break</title><title>AIP conference proceedings</title><description>The Singular Spectrum Analysis (SSA) forecasting method has been used widely recently. SSA has characteristics and advantages in decomposing data into trends, oscillations, and noise, which are for forecasting. Forecasting withSSA can be done by several ways e.g. Linear Recurrent Formula (LRF), Vector, and Simultaneous. The Bootstrapping process is implemented in those forecasting methods to increase the accuracy and builds the interval forecast. This study focuses on testing the sensitivity and accuracy of the combination of the Bootstrap-LRF and Bootstrap-Vector methods. The tests are applied to data that contains structural breaks, namely Indonesia's trade monthly data (exports and imports) from 1993 to 2019. The test results show that Bootstrap-Vector has a smaller forecasting range and is more accurate than Bootstrap-LRF in long-horizon forecast. Moreover, the Bootstrap-Vector is more stable in the presence of structural break in the data, meaning that this method is less sensitive to structural changes. Meanwhile, Bootstrap-LRF is more accurate in short horizon forecast.</description><subject>Accuracy</subject><subject>Forecasting</subject><subject>Horizon</subject><subject>International trade</subject><subject>Performance evaluation</subject><subject>Spectrum analysis</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkE1OwzAQhS0EEqWw4AaW2CGl2I4d10uo-JMqwQIQu8hxJpCSJmFsI_UWHBkXumA1o5nvzRs9Qk45m3FW5BdqxjgzRvE9MuFK8UwXvNgnE8aMzITMXw_JkfcrxoTRej4h34-AzYBr2zug8GW7aEM79HRo6NUwBB_Qjtmy7cEiRXAREfpAt4rYWWr7-h_2Ai4MSH3bv6VlasY0wLhOmO02vvW07Wl4BzoieNgaJpckjS5EtB2tEOzHMTlobOfhZFen5Pnm-mlxly0fbu8Xl8vMCTbnmaoqyZuaiZqZuTXgJKvBFkZXAlzFKlNIUVvthKxrYI1RlXZaSShMIwoueT4lZ393Rxw-I_hQroaI6VFfCj3XWgguWaLO_yjv2vCbTDliu7a4KTkrt4mXqtwlnv8AnTV2wg</recordid><startdate>20230317</startdate><enddate>20230317</enddate><creator>Sasmita, Yoga</creator><creator>Kuswanto, Heri</creator><creator>Prastyo, Dedy D.</creator><creator>Otok, Bambang W.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230317</creationdate><title>Performance evaluation of Bootstrap-Linear recurrent formula and Bootstrap-Vector singular spectrum analysis in the presence of structural break</title><author>Sasmita, Yoga ; Kuswanto, Heri ; Prastyo, Dedy D. ; Otok, Bambang W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2081-5bb41fd02d098a9ec40dea697b2ecb0b9642da7c24dde0f95b7c754e69f261413</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Forecasting</topic><topic>Horizon</topic><topic>International trade</topic><topic>Performance evaluation</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sasmita, Yoga</creatorcontrib><creatorcontrib>Kuswanto, Heri</creatorcontrib><creatorcontrib>Prastyo, Dedy D.</creatorcontrib><creatorcontrib>Otok, Bambang W.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sasmita, Yoga</au><au>Kuswanto, Heri</au><au>Prastyo, Dedy D.</au><au>Otok, Bambang W.</au><au>Ariyanti, Nur Aeni</au><au>Fauzi, Fika</au><au>Sukoco, Heru</au><au>Kuswandi, Paramita Cahyaningrum</au><au>Pertiwi, Kartika Ratna</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Performance evaluation of Bootstrap-Linear recurrent formula and Bootstrap-Vector singular spectrum analysis in the presence of structural break</atitle><btitle>AIP conference proceedings</btitle><date>2023-03-17</date><risdate>2023</risdate><volume>2556</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The Singular Spectrum Analysis (SSA) forecasting method has been used widely recently. SSA has characteristics and advantages in decomposing data into trends, oscillations, and noise, which are for forecasting. Forecasting withSSA can be done by several ways e.g. Linear Recurrent Formula (LRF), Vector, and Simultaneous. The Bootstrapping process is implemented in those forecasting methods to increase the accuracy and builds the interval forecast. This study focuses on testing the sensitivity and accuracy of the combination of the Bootstrap-LRF and Bootstrap-Vector methods. The tests are applied to data that contains structural breaks, namely Indonesia's trade monthly data (exports and imports) from 1993 to 2019. The test results show that Bootstrap-Vector has a smaller forecasting range and is more accurate than Bootstrap-LRF in long-horizon forecast. Moreover, the Bootstrap-Vector is more stable in the presence of structural break in the data, meaning that this method is less sensitive to structural changes. Meanwhile, Bootstrap-LRF is more accurate in short horizon forecast.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0109951</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2023, Vol.2556 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2787722140
source AIP Journals Complete
subjects Accuracy
Forecasting
Horizon
International trade
Performance evaluation
Spectrum analysis
title Performance evaluation of Bootstrap-Linear recurrent formula and Bootstrap-Vector singular spectrum analysis in the presence of structural break
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T04%3A16%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Performance%20evaluation%20of%20Bootstrap-Linear%20recurrent%20formula%20and%20Bootstrap-Vector%20singular%20spectrum%20analysis%20in%20the%20presence%20of%20structural%20break&rft.btitle=AIP%20conference%20proceedings&rft.au=Sasmita,%20Yoga&rft.date=2023-03-17&rft.volume=2556&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0109951&rft_dat=%3Cproquest_scita%3E2787722140%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2787722140&rft_id=info:pmid/&rfr_iscdi=true