Detection of diseased rubber plantations using satellite remote sensing

The study evaluates the potential of satellite remote sensing technology for detection, mapping and monitoring of diseased rubber plantation affected by Corynespora and Gloeosporium fungi, which causes leaf spot and leaf fall. Multi-date satellite data of IRS-1C have been analyzed adopting enhanceme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Indian Society of Remote Sensing 2004, Vol.32 (1), p.49-58
Hauptverfasser: Ranganath, B. K, Pradeep, N, Manjula, V. B, Gowda, Balakrishna, Rajanna, M. D, Shettigar, Damodar, RAo, P. P. Nageswara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 58
container_issue 1
container_start_page 49
container_title Journal of the Indian Society of Remote Sensing
container_volume 32
creator Ranganath, B. K
Pradeep, N
Manjula, V. B
Gowda, Balakrishna
Rajanna, M. D
Shettigar, Damodar
RAo, P. P. Nageswara
description The study evaluates the potential of satellite remote sensing technology for detection, mapping and monitoring of diseased rubber plantation affected by Corynespora and Gloeosporium fungi, which causes leaf spot and leaf fall. Multi-date satellite data of IRS-1C have been analyzed adopting enhancement and classification techniques to identify and extract information on the spatial extent and distribution of healthy and diseased rubber plants with an accuracy of 90%. The diseased rubber plantations have shown considerable reduction in the near-infrared reflectance followed by a rise in the reflectance in red and short wave infrared. Vegetation index images generated for different periods have shown the progress of disease incidence, severity and recovery of rubber plantations after fungicidal spraying. The study has demonstrated the use of remote sensing technology in identifying and delineating diseased rubber plantations. Early detection of the disease would be of immense value for taking up necessary control measures and minimize the loss.
doi_str_mv 10.1007/BF03030847
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2787641350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2787641350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-8e7eb69ff1d2575a52758c40c50d3993e0f8bd05ea4278c38701223b752c39133</originalsourceid><addsrcrecordid>eNpFkE9Lw0AQxRdRsFYvfgEXvAnR2X_Z7FGrrULBgxa8LZvNpKSkSd1NDn57N1SQObxh3m9m4BFyzeCeAeiHpyWIVIXUJ2QGRstMAOSnqedKZXkOX-fkIsZdGkrF-IysnnFAPzR9R_uaVk1EF7GiYSxLDPTQum5wkxvpGJtuS6MbsG2bAWnAfZ8kYjcZl-Ssdm3Eqz-dk83y5XPxmq3fV2-Lx3XmmSmGrECNZW7qmlVcaeUU16rwEryCShgjEOqirEChk1wXXhQaGOei1Ip7YZgQc3J7vHsI_feIcbC7fgxdemnTgs4lEwoSdXekfOhjDFjbQ2j2LvxYBnYKyv4HleCbI1y73rptaKLdfHBgOaSUjJRc_AKp72Kr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787641350</pqid></control><display><type>article</type><title>Detection of diseased rubber plantations using satellite remote sensing</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ranganath, B. K ; Pradeep, N ; Manjula, V. B ; Gowda, Balakrishna ; Rajanna, M. D ; Shettigar, Damodar ; RAo, P. P. Nageswara</creator><creatorcontrib>Ranganath, B. K ; Pradeep, N ; Manjula, V. B ; Gowda, Balakrishna ; Rajanna, M. D ; Shettigar, Damodar ; RAo, P. P. Nageswara</creatorcontrib><description>The study evaluates the potential of satellite remote sensing technology for detection, mapping and monitoring of diseased rubber plantation affected by Corynespora and Gloeosporium fungi, which causes leaf spot and leaf fall. Multi-date satellite data of IRS-1C have been analyzed adopting enhancement and classification techniques to identify and extract information on the spatial extent and distribution of healthy and diseased rubber plants with an accuracy of 90%. The diseased rubber plantations have shown considerable reduction in the near-infrared reflectance followed by a rise in the reflectance in red and short wave infrared. Vegetation index images generated for different periods have shown the progress of disease incidence, severity and recovery of rubber plantations after fungicidal spraying. The study has demonstrated the use of remote sensing technology in identifying and delineating diseased rubber plantations. Early detection of the disease would be of immense value for taking up necessary control measures and minimize the loss.</description><identifier>ISSN: 0255-660X</identifier><identifier>EISSN: 0974-3006</identifier><identifier>DOI: 10.1007/BF03030847</identifier><language>eng</language><publisher>Dordrecht: Springer India</publisher><subject>control methods ; Corynespora ; disease detection ; disease incidence ; fungi ; Fungicides ; Gloeosporium ; Infrared imagery ; Infrared reflection ; leaf spot ; Leaves ; monitoring ; Plant diseases ; Plantations ; Reflectance ; Remote sensing ; Rubber ; Satellites ; Short wave radiation ; Spraying ; Technology ; Vegetation index</subject><ispartof>Journal of the Indian Society of Remote Sensing, 2004, Vol.32 (1), p.49-58</ispartof><rights>Springer 2004.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c198t-8e7eb69ff1d2575a52758c40c50d3993e0f8bd05ea4278c38701223b752c39133</citedby><cites>FETCH-LOGICAL-c198t-8e7eb69ff1d2575a52758c40c50d3993e0f8bd05ea4278c38701223b752c39133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Ranganath, B. K</creatorcontrib><creatorcontrib>Pradeep, N</creatorcontrib><creatorcontrib>Manjula, V. B</creatorcontrib><creatorcontrib>Gowda, Balakrishna</creatorcontrib><creatorcontrib>Rajanna, M. D</creatorcontrib><creatorcontrib>Shettigar, Damodar</creatorcontrib><creatorcontrib>RAo, P. P. Nageswara</creatorcontrib><title>Detection of diseased rubber plantations using satellite remote sensing</title><title>Journal of the Indian Society of Remote Sensing</title><description>The study evaluates the potential of satellite remote sensing technology for detection, mapping and monitoring of diseased rubber plantation affected by Corynespora and Gloeosporium fungi, which causes leaf spot and leaf fall. Multi-date satellite data of IRS-1C have been analyzed adopting enhancement and classification techniques to identify and extract information on the spatial extent and distribution of healthy and diseased rubber plants with an accuracy of 90%. The diseased rubber plantations have shown considerable reduction in the near-infrared reflectance followed by a rise in the reflectance in red and short wave infrared. Vegetation index images generated for different periods have shown the progress of disease incidence, severity and recovery of rubber plantations after fungicidal spraying. The study has demonstrated the use of remote sensing technology in identifying and delineating diseased rubber plantations. Early detection of the disease would be of immense value for taking up necessary control measures and minimize the loss.</description><subject>control methods</subject><subject>Corynespora</subject><subject>disease detection</subject><subject>disease incidence</subject><subject>fungi</subject><subject>Fungicides</subject><subject>Gloeosporium</subject><subject>Infrared imagery</subject><subject>Infrared reflection</subject><subject>leaf spot</subject><subject>Leaves</subject><subject>monitoring</subject><subject>Plant diseases</subject><subject>Plantations</subject><subject>Reflectance</subject><subject>Remote sensing</subject><subject>Rubber</subject><subject>Satellites</subject><subject>Short wave radiation</subject><subject>Spraying</subject><subject>Technology</subject><subject>Vegetation index</subject><issn>0255-660X</issn><issn>0974-3006</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpFkE9Lw0AQxRdRsFYvfgEXvAnR2X_Z7FGrrULBgxa8LZvNpKSkSd1NDn57N1SQObxh3m9m4BFyzeCeAeiHpyWIVIXUJ2QGRstMAOSnqedKZXkOX-fkIsZdGkrF-IysnnFAPzR9R_uaVk1EF7GiYSxLDPTQum5wkxvpGJtuS6MbsG2bAWnAfZ8kYjcZl-Ssdm3Eqz-dk83y5XPxmq3fV2-Lx3XmmSmGrECNZW7qmlVcaeUU16rwEryCShgjEOqirEChk1wXXhQaGOei1Ip7YZgQc3J7vHsI_feIcbC7fgxdemnTgs4lEwoSdXekfOhjDFjbQ2j2LvxYBnYKyv4HleCbI1y73rptaKLdfHBgOaSUjJRc_AKp72Kr</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Ranganath, B. K</creator><creator>Pradeep, N</creator><creator>Manjula, V. B</creator><creator>Gowda, Balakrishna</creator><creator>Rajanna, M. D</creator><creator>Shettigar, Damodar</creator><creator>RAo, P. P. Nageswara</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2004</creationdate><title>Detection of diseased rubber plantations using satellite remote sensing</title><author>Ranganath, B. K ; Pradeep, N ; Manjula, V. B ; Gowda, Balakrishna ; Rajanna, M. D ; Shettigar, Damodar ; RAo, P. P. Nageswara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-8e7eb69ff1d2575a52758c40c50d3993e0f8bd05ea4278c38701223b752c39133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>control methods</topic><topic>Corynespora</topic><topic>disease detection</topic><topic>disease incidence</topic><topic>fungi</topic><topic>Fungicides</topic><topic>Gloeosporium</topic><topic>Infrared imagery</topic><topic>Infrared reflection</topic><topic>leaf spot</topic><topic>Leaves</topic><topic>monitoring</topic><topic>Plant diseases</topic><topic>Plantations</topic><topic>Reflectance</topic><topic>Remote sensing</topic><topic>Rubber</topic><topic>Satellites</topic><topic>Short wave radiation</topic><topic>Spraying</topic><topic>Technology</topic><topic>Vegetation index</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ranganath, B. K</creatorcontrib><creatorcontrib>Pradeep, N</creatorcontrib><creatorcontrib>Manjula, V. B</creatorcontrib><creatorcontrib>Gowda, Balakrishna</creatorcontrib><creatorcontrib>Rajanna, M. D</creatorcontrib><creatorcontrib>Shettigar, Damodar</creatorcontrib><creatorcontrib>RAo, P. P. Nageswara</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><jtitle>Journal of the Indian Society of Remote Sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ranganath, B. K</au><au>Pradeep, N</au><au>Manjula, V. B</au><au>Gowda, Balakrishna</au><au>Rajanna, M. D</au><au>Shettigar, Damodar</au><au>RAo, P. P. Nageswara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of diseased rubber plantations using satellite remote sensing</atitle><jtitle>Journal of the Indian Society of Remote Sensing</jtitle><date>2004</date><risdate>2004</risdate><volume>32</volume><issue>1</issue><spage>49</spage><epage>58</epage><pages>49-58</pages><issn>0255-660X</issn><eissn>0974-3006</eissn><abstract>The study evaluates the potential of satellite remote sensing technology for detection, mapping and monitoring of diseased rubber plantation affected by Corynespora and Gloeosporium fungi, which causes leaf spot and leaf fall. Multi-date satellite data of IRS-1C have been analyzed adopting enhancement and classification techniques to identify and extract information on the spatial extent and distribution of healthy and diseased rubber plants with an accuracy of 90%. The diseased rubber plantations have shown considerable reduction in the near-infrared reflectance followed by a rise in the reflectance in red and short wave infrared. Vegetation index images generated for different periods have shown the progress of disease incidence, severity and recovery of rubber plantations after fungicidal spraying. The study has demonstrated the use of remote sensing technology in identifying and delineating diseased rubber plantations. Early detection of the disease would be of immense value for taking up necessary control measures and minimize the loss.</abstract><cop>Dordrecht</cop><pub>Springer India</pub><doi>10.1007/BF03030847</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0255-660X
ispartof Journal of the Indian Society of Remote Sensing, 2004, Vol.32 (1), p.49-58
issn 0255-660X
0974-3006
language eng
recordid cdi_proquest_journals_2787641350
source SpringerLink Journals - AutoHoldings
subjects control methods
Corynespora
disease detection
disease incidence
fungi
Fungicides
Gloeosporium
Infrared imagery
Infrared reflection
leaf spot
Leaves
monitoring
Plant diseases
Plantations
Reflectance
Remote sensing
Rubber
Satellites
Short wave radiation
Spraying
Technology
Vegetation index
title Detection of diseased rubber plantations using satellite remote sensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A20%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20diseased%20rubber%20plantations%20using%20satellite%20remote%20sensing&rft.jtitle=Journal%20of%20the%20Indian%20Society%20of%20Remote%20Sensing&rft.au=Ranganath,%20B.%20K&rft.date=2004&rft.volume=32&rft.issue=1&rft.spage=49&rft.epage=58&rft.pages=49-58&rft.issn=0255-660X&rft.eissn=0974-3006&rft_id=info:doi/10.1007/BF03030847&rft_dat=%3Cproquest_cross%3E2787641350%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2787641350&rft_id=info:pmid/&rfr_iscdi=true