Image Segmentation of Skin Neoplasms Using the Active Contour Method
Computer vision technologies are being actively introduced into modern life, including medical practice. The development of such technologies has led to the emergence of computer systems that allow the detection and classification of skin diseases with a quality comparable to and in some cases excee...
Gespeichert in:
Veröffentlicht in: | Physics of atomic nuclei 2022-12, Vol.85 (11), p.1956-1960 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1960 |
---|---|
container_issue | 11 |
container_start_page | 1956 |
container_title | Physics of atomic nuclei |
container_volume | 85 |
creator | Voronin, A. E. Pronichev, A. N. Nikitaev, V. G. Solomatin, M. A. Zanegina, T. P. Arkhangelskaya, I. V. Petukhova, A. I. Bagnova, P. Yu Soshnina, A. V. Tamrazova, O. B. Sergeev, V. Yu Sergeev, Yu. Yu |
description | Computer vision technologies are being actively introduced into modern life, including medical practice. The development of such technologies has led to the emergence of computer systems that allow the detection and classification of skin diseases with a quality comparable to and in some cases exceeding human capabilities. The article reveals the method of automatic segmentation on the basis of dermatoscopic images provided by doctors obtained using a digital optical device—a dermatoscope. The main goal of the model being developed is to identify the neoplasm zone and areas of hyperpigmentation on images of skin neoplasms for further integration into medical decision support systems for diagnosing of melanoma. As a result of the work carried out, a software package was created that allows segmentation of the neoplasm. As a demonstration of the method, experimental studies of the detection of melanoma boundaries and zones of areas of signs on images of skin neoplasms are presented. The developed system can be used for diagnostic research and educational purposes. |
doi_str_mv | 10.1134/S1063778822090411 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2787638237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A741700566</galeid><sourcerecordid>A741700566</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-4bfa4103365d47071de34fc2a0c65040a8ff025fc2c2be9565033c45edd7e9d23</originalsourceid><addsrcrecordid>eNp1kctKxDAUhosoeH0AdwFXLqq5NWmXw3gb8AKOgrsQ05ManSZjkxF9eyMjyKCSRcJ_vu8k4RTFPsFHhDB-PCVYMCnrmlLcYE7IWrFFKkFL0dCH9XzO5fKrvllsx_iMMSF1hbeKk0mvO0BT6HrwSScXPAoWTV-cR9cQ5jMd-4juo_MdSk-ARia5N0Dj4FNYDOgK0lNod4sNq2cR9r73neL-7PRufFFe3pxPxqPL0jDRpJI_Ws0JZkxULZdYkhYYt4ZqbESFOda1tZhWOTH0EZoqh4wZXkHbSmhaynaKg2Xf-RBeFxCTes6P8PlKRWUtBaspkz9Up2egnLchDdr0Lho1kpxIjCshMnX0B5VXC70zwYN1OV8RDleEzCR4T51exKgm09tVlixZM4QYB7BqPrheDx-KYPU1L_VrXtmhSydm1ncw_Hzuf-kTb_6TFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787638237</pqid></control><display><type>article</type><title>Image Segmentation of Skin Neoplasms Using the Active Contour Method</title><source>SpringerLink Journals</source><creator>Voronin, A. E. ; Pronichev, A. N. ; Nikitaev, V. G. ; Solomatin, M. A. ; Zanegina, T. P. ; Arkhangelskaya, I. V. ; Petukhova, A. I. ; Bagnova, P. Yu ; Soshnina, A. V. ; Tamrazova, O. B. ; Sergeev, V. Yu ; Sergeev, Yu. Yu</creator><creatorcontrib>Voronin, A. E. ; Pronichev, A. N. ; Nikitaev, V. G. ; Solomatin, M. A. ; Zanegina, T. P. ; Arkhangelskaya, I. V. ; Petukhova, A. I. ; Bagnova, P. Yu ; Soshnina, A. V. ; Tamrazova, O. B. ; Sergeev, V. Yu ; Sergeev, Yu. Yu</creatorcontrib><description>Computer vision technologies are being actively introduced into modern life, including medical practice. The development of such technologies has led to the emergence of computer systems that allow the detection and classification of skin diseases with a quality comparable to and in some cases exceeding human capabilities. The article reveals the method of automatic segmentation on the basis of dermatoscopic images provided by doctors obtained using a digital optical device—a dermatoscope. The main goal of the model being developed is to identify the neoplasm zone and areas of hyperpigmentation on images of skin neoplasms for further integration into medical decision support systems for diagnosing of melanoma. As a result of the work carried out, a software package was created that allows segmentation of the neoplasm. As a demonstration of the method, experimental studies of the detection of melanoma boundaries and zones of areas of signs on images of skin neoplasms are presented. The developed system can be used for diagnostic research and educational purposes.</description><identifier>ISSN: 1063-7788</identifier><identifier>EISSN: 1562-692X</identifier><identifier>DOI: 10.1134/S1063778822090411</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Analysis ; Computer vision ; Computers ; Decision support systems ; Digital imaging ; Equipment and supplies ; Image processing ; Image segmentation ; Machine vision ; Medical imaging ; Medical Physics and Biophysics ; Melanoma ; Methods ; Neoplasms ; Particle and Nuclear Physics ; Physics ; Physics and Astronomy ; Skin ; Skin tumors ; Tumors</subject><ispartof>Physics of atomic nuclei, 2022-12, Vol.85 (11), p.1956-1960</ispartof><rights>Pleiades Publishing, Ltd. 2022. ISSN 1063-7788, Physics of Atomic Nuclei, 2022, Vol. 85, No. 11, pp. 1956–1960. © Pleiades Publishing, Ltd., 2022.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c369t-4bfa4103365d47071de34fc2a0c65040a8ff025fc2c2be9565033c45edd7e9d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063778822090411$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063778822090411$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Voronin, A. E.</creatorcontrib><creatorcontrib>Pronichev, A. N.</creatorcontrib><creatorcontrib>Nikitaev, V. G.</creatorcontrib><creatorcontrib>Solomatin, M. A.</creatorcontrib><creatorcontrib>Zanegina, T. P.</creatorcontrib><creatorcontrib>Arkhangelskaya, I. V.</creatorcontrib><creatorcontrib>Petukhova, A. I.</creatorcontrib><creatorcontrib>Bagnova, P. Yu</creatorcontrib><creatorcontrib>Soshnina, A. V.</creatorcontrib><creatorcontrib>Tamrazova, O. B.</creatorcontrib><creatorcontrib>Sergeev, V. Yu</creatorcontrib><creatorcontrib>Sergeev, Yu. Yu</creatorcontrib><title>Image Segmentation of Skin Neoplasms Using the Active Contour Method</title><title>Physics of atomic nuclei</title><addtitle>Phys. Atom. Nuclei</addtitle><description>Computer vision technologies are being actively introduced into modern life, including medical practice. The development of such technologies has led to the emergence of computer systems that allow the detection and classification of skin diseases with a quality comparable to and in some cases exceeding human capabilities. The article reveals the method of automatic segmentation on the basis of dermatoscopic images provided by doctors obtained using a digital optical device—a dermatoscope. The main goal of the model being developed is to identify the neoplasm zone and areas of hyperpigmentation on images of skin neoplasms for further integration into medical decision support systems for diagnosing of melanoma. As a result of the work carried out, a software package was created that allows segmentation of the neoplasm. As a demonstration of the method, experimental studies of the detection of melanoma boundaries and zones of areas of signs on images of skin neoplasms are presented. The developed system can be used for diagnostic research and educational purposes.</description><subject>Analysis</subject><subject>Computer vision</subject><subject>Computers</subject><subject>Decision support systems</subject><subject>Digital imaging</subject><subject>Equipment and supplies</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Machine vision</subject><subject>Medical imaging</subject><subject>Medical Physics and Biophysics</subject><subject>Melanoma</subject><subject>Methods</subject><subject>Neoplasms</subject><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Skin</subject><subject>Skin tumors</subject><subject>Tumors</subject><issn>1063-7788</issn><issn>1562-692X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kctKxDAUhosoeH0AdwFXLqq5NWmXw3gb8AKOgrsQ05ManSZjkxF9eyMjyKCSRcJ_vu8k4RTFPsFHhDB-PCVYMCnrmlLcYE7IWrFFKkFL0dCH9XzO5fKrvllsx_iMMSF1hbeKk0mvO0BT6HrwSScXPAoWTV-cR9cQ5jMd-4juo_MdSk-ARia5N0Dj4FNYDOgK0lNod4sNq2cR9r73neL-7PRufFFe3pxPxqPL0jDRpJI_Ws0JZkxULZdYkhYYt4ZqbESFOda1tZhWOTH0EZoqh4wZXkHbSmhaynaKg2Xf-RBeFxCTes6P8PlKRWUtBaspkz9Up2egnLchDdr0Lho1kpxIjCshMnX0B5VXC70zwYN1OV8RDleEzCR4T51exKgm09tVlixZM4QYB7BqPrheDx-KYPU1L_VrXtmhSydm1ncw_Hzuf-kTb_6TFg</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Voronin, A. E.</creator><creator>Pronichev, A. N.</creator><creator>Nikitaev, V. G.</creator><creator>Solomatin, M. A.</creator><creator>Zanegina, T. P.</creator><creator>Arkhangelskaya, I. V.</creator><creator>Petukhova, A. I.</creator><creator>Bagnova, P. Yu</creator><creator>Soshnina, A. V.</creator><creator>Tamrazova, O. B.</creator><creator>Sergeev, V. Yu</creator><creator>Sergeev, Yu. Yu</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20221201</creationdate><title>Image Segmentation of Skin Neoplasms Using the Active Contour Method</title><author>Voronin, A. E. ; Pronichev, A. N. ; Nikitaev, V. G. ; Solomatin, M. A. ; Zanegina, T. P. ; Arkhangelskaya, I. V. ; Petukhova, A. I. ; Bagnova, P. Yu ; Soshnina, A. V. ; Tamrazova, O. B. ; Sergeev, V. Yu ; Sergeev, Yu. Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-4bfa4103365d47071de34fc2a0c65040a8ff025fc2c2be9565033c45edd7e9d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Computer vision</topic><topic>Computers</topic><topic>Decision support systems</topic><topic>Digital imaging</topic><topic>Equipment and supplies</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Machine vision</topic><topic>Medical imaging</topic><topic>Medical Physics and Biophysics</topic><topic>Melanoma</topic><topic>Methods</topic><topic>Neoplasms</topic><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Skin</topic><topic>Skin tumors</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Voronin, A. E.</creatorcontrib><creatorcontrib>Pronichev, A. N.</creatorcontrib><creatorcontrib>Nikitaev, V. G.</creatorcontrib><creatorcontrib>Solomatin, M. A.</creatorcontrib><creatorcontrib>Zanegina, T. P.</creatorcontrib><creatorcontrib>Arkhangelskaya, I. V.</creatorcontrib><creatorcontrib>Petukhova, A. I.</creatorcontrib><creatorcontrib>Bagnova, P. Yu</creatorcontrib><creatorcontrib>Soshnina, A. V.</creatorcontrib><creatorcontrib>Tamrazova, O. B.</creatorcontrib><creatorcontrib>Sergeev, V. Yu</creatorcontrib><creatorcontrib>Sergeev, Yu. Yu</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Physics of atomic nuclei</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Voronin, A. E.</au><au>Pronichev, A. N.</au><au>Nikitaev, V. G.</au><au>Solomatin, M. A.</au><au>Zanegina, T. P.</au><au>Arkhangelskaya, I. V.</au><au>Petukhova, A. I.</au><au>Bagnova, P. Yu</au><au>Soshnina, A. V.</au><au>Tamrazova, O. B.</au><au>Sergeev, V. Yu</au><au>Sergeev, Yu. Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image Segmentation of Skin Neoplasms Using the Active Contour Method</atitle><jtitle>Physics of atomic nuclei</jtitle><stitle>Phys. Atom. Nuclei</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>85</volume><issue>11</issue><spage>1956</spage><epage>1960</epage><pages>1956-1960</pages><issn>1063-7788</issn><eissn>1562-692X</eissn><abstract>Computer vision technologies are being actively introduced into modern life, including medical practice. The development of such technologies has led to the emergence of computer systems that allow the detection and classification of skin diseases with a quality comparable to and in some cases exceeding human capabilities. The article reveals the method of automatic segmentation on the basis of dermatoscopic images provided by doctors obtained using a digital optical device—a dermatoscope. The main goal of the model being developed is to identify the neoplasm zone and areas of hyperpigmentation on images of skin neoplasms for further integration into medical decision support systems for diagnosing of melanoma. As a result of the work carried out, a software package was created that allows segmentation of the neoplasm. As a demonstration of the method, experimental studies of the detection of melanoma boundaries and zones of areas of signs on images of skin neoplasms are presented. The developed system can be used for diagnostic research and educational purposes.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063778822090411</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7788 |
ispartof | Physics of atomic nuclei, 2022-12, Vol.85 (11), p.1956-1960 |
issn | 1063-7788 1562-692X |
language | eng |
recordid | cdi_proquest_journals_2787638237 |
source | SpringerLink Journals |
subjects | Analysis Computer vision Computers Decision support systems Digital imaging Equipment and supplies Image processing Image segmentation Machine vision Medical imaging Medical Physics and Biophysics Melanoma Methods Neoplasms Particle and Nuclear Physics Physics Physics and Astronomy Skin Skin tumors Tumors |
title | Image Segmentation of Skin Neoplasms Using the Active Contour Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T08%3A24%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20Segmentation%20of%20Skin%20Neoplasms%20Using%20the%20Active%20Contour%20Method&rft.jtitle=Physics%20of%20atomic%20nuclei&rft.au=Voronin,%20A.%20E.&rft.date=2022-12-01&rft.volume=85&rft.issue=11&rft.spage=1956&rft.epage=1960&rft.pages=1956-1960&rft.issn=1063-7788&rft.eissn=1562-692X&rft_id=info:doi/10.1134/S1063778822090411&rft_dat=%3Cgale_proqu%3EA741700566%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2787638237&rft_id=info:pmid/&rft_galeid=A741700566&rfr_iscdi=true |