Testing homogeneity of control and treatment populations — local optimality and related issues
Durairajan and Raman (1996 a, b) studied the robustness of Locally most powerful invariant (LMPI) tests for compound normal model in control and treatment populations. In the present paper, the Locally most powerful (LMP) tests are constructed for no contamination in normal mixture model through tes...
Gespeichert in:
Veröffentlicht in: | Statistical papers (Berlin, Germany) Germany), 2002-04, Vol.43 (2), p.257-271 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 271 |
---|---|
container_issue | 2 |
container_start_page | 257 |
container_title | Statistical papers (Berlin, Germany) |
container_volume | 43 |
creator | Raman, K. J. Surairajan, T. M. |
description | Durairajan and Raman (1996 a, b) studied the robustness of Locally most powerful invariant (LMPI) tests for compound normal model in control and treatment populations. In the present paper, the Locally most powerful (LMP) tests are constructed for no contamination in normal mixture model through testing the parameter of mixture of distributions and the mixing proportion. The expected performance of LMP tests are compared using Efron's Statistical Curvature on the lines of Sen Gupta and Pal (1991). The Locally most powerful similar (LMPS) tests for the equality of control and treatment populations in the presence of nuisance parameters are also constructed. Further, the null and non-null distributions of the test statistics are derived and some power computations are made. |
doi_str_mv | 10.1007/s00362-002-0099-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2787440847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1664750881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c250t-82dca0763855d75e4c9b36752af7f8300236811bf96bef186316e8bac0fc86b43</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhS0EEqXwAGwWzIHrOPHPiCooSJVYymwcxy6p0jjY7tCNh-AJeRIclZXh6i7fueeeg9A1gTsCwO8jAGVlATCNlAU7QTPCCC0kl-IUzUDSsqihZOfoIsYtABFCwAy9r21M3bDBH37nN3awXTpg77DxQwq-x3pocQpWp50dEh79uO916vwQ8c_XN-690T32Y-p2up-UEx5sRmyLuxj3Nl6iM6f7aK_-9hy9PT2uF8_F6nX5snhYFaasIRWibI0Gzqio65bXtjKyoYzXpXbcCZpzUSYIaZxkjXVEMEqYFY024IxgTUXn6PZ4dwz-M_smtfX7MGRLVXLBqwpExTN18y9FmZQV5SRD5AiZ4GMM1qkx5IDhoAioqW11bFvlr9TUtmL0F_rBc4o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>236994371</pqid></control><display><type>article</type><title>Testing homogeneity of control and treatment populations — local optimality and related issues</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Raman, K. J. ; Surairajan, T. M.</creator><creatorcontrib>Raman, K. J. ; Surairajan, T. M.</creatorcontrib><description>Durairajan and Raman (1996 a, b) studied the robustness of Locally most powerful invariant (LMPI) tests for compound normal model in control and treatment populations. In the present paper, the Locally most powerful (LMP) tests are constructed for no contamination in normal mixture model through testing the parameter of mixture of distributions and the mixing proportion. The expected performance of LMP tests are compared using Efron's Statistical Curvature on the lines of Sen Gupta and Pal (1991). The Locally most powerful similar (LMPS) tests for the equality of control and treatment populations in the presence of nuisance parameters are also constructed. Further, the null and non-null distributions of the test statistics are derived and some power computations are made.</description><identifier>ISSN: 0932-5026</identifier><identifier>EISSN: 1613-9798</identifier><identifier>DOI: 10.1007/s00362-002-0099-6</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Homogeneity ; Model testing ; Parameters ; Population ; Populations ; Probabilistic models ; Random variables ; Sample size ; Statistical tests ; Statistics ; Teaching methods</subject><ispartof>Statistical papers (Berlin, Germany), 2002-04, Vol.43 (2), p.257-271</ispartof><rights>Springer-Verlag 2002</rights><rights>Springer-Verlag 2002.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c250t-82dca0763855d75e4c9b36752af7f8300236811bf96bef186316e8bac0fc86b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Raman, K. J.</creatorcontrib><creatorcontrib>Surairajan, T. M.</creatorcontrib><title>Testing homogeneity of control and treatment populations — local optimality and related issues</title><title>Statistical papers (Berlin, Germany)</title><description>Durairajan and Raman (1996 a, b) studied the robustness of Locally most powerful invariant (LMPI) tests for compound normal model in control and treatment populations. In the present paper, the Locally most powerful (LMP) tests are constructed for no contamination in normal mixture model through testing the parameter of mixture of distributions and the mixing proportion. The expected performance of LMP tests are compared using Efron's Statistical Curvature on the lines of Sen Gupta and Pal (1991). The Locally most powerful similar (LMPS) tests for the equality of control and treatment populations in the presence of nuisance parameters are also constructed. Further, the null and non-null distributions of the test statistics are derived and some power computations are made.</description><subject>Homogeneity</subject><subject>Model testing</subject><subject>Parameters</subject><subject>Population</subject><subject>Populations</subject><subject>Probabilistic models</subject><subject>Random variables</subject><subject>Sample size</subject><subject>Statistical tests</subject><subject>Statistics</subject><subject>Teaching methods</subject><issn>0932-5026</issn><issn>1613-9798</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kL1OwzAUhS0EEqXwAGwWzIHrOPHPiCooSJVYymwcxy6p0jjY7tCNh-AJeRIclZXh6i7fueeeg9A1gTsCwO8jAGVlATCNlAU7QTPCCC0kl-IUzUDSsqihZOfoIsYtABFCwAy9r21M3bDBH37nN3awXTpg77DxQwq-x3pocQpWp50dEh79uO916vwQ8c_XN-690T32Y-p2up-UEx5sRmyLuxj3Nl6iM6f7aK_-9hy9PT2uF8_F6nX5snhYFaasIRWibI0Gzqio65bXtjKyoYzXpXbcCZpzUSYIaZxkjXVEMEqYFY024IxgTUXn6PZ4dwz-M_smtfX7MGRLVXLBqwpExTN18y9FmZQV5SRD5AiZ4GMM1qkx5IDhoAioqW11bFvlr9TUtmL0F_rBc4o</recordid><startdate>20020401</startdate><enddate>20020401</enddate><creator>Raman, K. J.</creator><creator>Surairajan, T. M.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>PRINS</scope></search><sort><creationdate>20020401</creationdate><title>Testing homogeneity of control and treatment populations — local optimality and related issues</title><author>Raman, K. J. ; Surairajan, T. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c250t-82dca0763855d75e4c9b36752af7f8300236811bf96bef186316e8bac0fc86b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Homogeneity</topic><topic>Model testing</topic><topic>Parameters</topic><topic>Population</topic><topic>Populations</topic><topic>Probabilistic models</topic><topic>Random variables</topic><topic>Sample size</topic><topic>Statistical tests</topic><topic>Statistics</topic><topic>Teaching methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raman, K. J.</creatorcontrib><creatorcontrib>Surairajan, T. M.</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>ProQuest Central China</collection><jtitle>Statistical papers (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raman, K. J.</au><au>Surairajan, T. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Testing homogeneity of control and treatment populations — local optimality and related issues</atitle><jtitle>Statistical papers (Berlin, Germany)</jtitle><date>2002-04-01</date><risdate>2002</risdate><volume>43</volume><issue>2</issue><spage>257</spage><epage>271</epage><pages>257-271</pages><issn>0932-5026</issn><eissn>1613-9798</eissn><abstract>Durairajan and Raman (1996 a, b) studied the robustness of Locally most powerful invariant (LMPI) tests for compound normal model in control and treatment populations. In the present paper, the Locally most powerful (LMP) tests are constructed for no contamination in normal mixture model through testing the parameter of mixture of distributions and the mixing proportion. The expected performance of LMP tests are compared using Efron's Statistical Curvature on the lines of Sen Gupta and Pal (1991). The Locally most powerful similar (LMPS) tests for the equality of control and treatment populations in the presence of nuisance parameters are also constructed. Further, the null and non-null distributions of the test statistics are derived and some power computations are made.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00362-002-0099-6</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0932-5026 |
ispartof | Statistical papers (Berlin, Germany), 2002-04, Vol.43 (2), p.257-271 |
issn | 0932-5026 1613-9798 |
language | eng |
recordid | cdi_proquest_journals_2787440847 |
source | Business Source Complete; SpringerLink Journals - AutoHoldings |
subjects | Homogeneity Model testing Parameters Population Populations Probabilistic models Random variables Sample size Statistical tests Statistics Teaching methods |
title | Testing homogeneity of control and treatment populations — local optimality and related issues |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A43%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Testing%20homogeneity%20of%20control%20and%20treatment%20populations%20%E2%80%94%20local%20optimality%20and%20related%20issues&rft.jtitle=Statistical%20papers%20(Berlin,%20Germany)&rft.au=Raman,%20K.%20J.&rft.date=2002-04-01&rft.volume=43&rft.issue=2&rft.spage=257&rft.epage=271&rft.pages=257-271&rft.issn=0932-5026&rft.eissn=1613-9798&rft_id=info:doi/10.1007/s00362-002-0099-6&rft_dat=%3Cproquest_cross%3E1664750881%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=236994371&rft_id=info:pmid/&rfr_iscdi=true |