Testing homogeneity of control and treatment populations — local optimality and related issues

Durairajan and Raman (1996 a, b) studied the robustness of Locally most powerful invariant (LMPI) tests for compound normal model in control and treatment populations. In the present paper, the Locally most powerful (LMP) tests are constructed for no contamination in normal mixture model through tes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical papers (Berlin, Germany) Germany), 2002-04, Vol.43 (2), p.257-271
Hauptverfasser: Raman, K. J., Surairajan, T. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 271
container_issue 2
container_start_page 257
container_title Statistical papers (Berlin, Germany)
container_volume 43
creator Raman, K. J.
Surairajan, T. M.
description Durairajan and Raman (1996 a, b) studied the robustness of Locally most powerful invariant (LMPI) tests for compound normal model in control and treatment populations. In the present paper, the Locally most powerful (LMP) tests are constructed for no contamination in normal mixture model through testing the parameter of mixture of distributions and the mixing proportion. The expected performance of LMP tests are compared using Efron's Statistical Curvature on the lines of Sen Gupta and Pal (1991). The Locally most powerful similar (LMPS) tests for the equality of control and treatment populations in the presence of nuisance parameters are also constructed. Further, the null and non-null distributions of the test statistics are derived and some power computations are made.
doi_str_mv 10.1007/s00362-002-0099-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2787440847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1664750881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c250t-82dca0763855d75e4c9b36752af7f8300236811bf96bef186316e8bac0fc86b43</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhS0EEqXwAGwWzIHrOPHPiCooSJVYymwcxy6p0jjY7tCNh-AJeRIclZXh6i7fueeeg9A1gTsCwO8jAGVlATCNlAU7QTPCCC0kl-IUzUDSsqihZOfoIsYtABFCwAy9r21M3bDBH37nN3awXTpg77DxQwq-x3pocQpWp50dEh79uO916vwQ8c_XN-690T32Y-p2up-UEx5sRmyLuxj3Nl6iM6f7aK_-9hy9PT2uF8_F6nX5snhYFaasIRWibI0Gzqio65bXtjKyoYzXpXbcCZpzUSYIaZxkjXVEMEqYFY024IxgTUXn6PZ4dwz-M_smtfX7MGRLVXLBqwpExTN18y9FmZQV5SRD5AiZ4GMM1qkx5IDhoAioqW11bFvlr9TUtmL0F_rBc4o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>236994371</pqid></control><display><type>article</type><title>Testing homogeneity of control and treatment populations — local optimality and related issues</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Raman, K. J. ; Surairajan, T. M.</creator><creatorcontrib>Raman, K. J. ; Surairajan, T. M.</creatorcontrib><description>Durairajan and Raman (1996 a, b) studied the robustness of Locally most powerful invariant (LMPI) tests for compound normal model in control and treatment populations. In the present paper, the Locally most powerful (LMP) tests are constructed for no contamination in normal mixture model through testing the parameter of mixture of distributions and the mixing proportion. The expected performance of LMP tests are compared using Efron's Statistical Curvature on the lines of Sen Gupta and Pal (1991). The Locally most powerful similar (LMPS) tests for the equality of control and treatment populations in the presence of nuisance parameters are also constructed. Further, the null and non-null distributions of the test statistics are derived and some power computations are made.</description><identifier>ISSN: 0932-5026</identifier><identifier>EISSN: 1613-9798</identifier><identifier>DOI: 10.1007/s00362-002-0099-6</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Homogeneity ; Model testing ; Parameters ; Population ; Populations ; Probabilistic models ; Random variables ; Sample size ; Statistical tests ; Statistics ; Teaching methods</subject><ispartof>Statistical papers (Berlin, Germany), 2002-04, Vol.43 (2), p.257-271</ispartof><rights>Springer-Verlag 2002</rights><rights>Springer-Verlag 2002.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c250t-82dca0763855d75e4c9b36752af7f8300236811bf96bef186316e8bac0fc86b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Raman, K. J.</creatorcontrib><creatorcontrib>Surairajan, T. M.</creatorcontrib><title>Testing homogeneity of control and treatment populations — local optimality and related issues</title><title>Statistical papers (Berlin, Germany)</title><description>Durairajan and Raman (1996 a, b) studied the robustness of Locally most powerful invariant (LMPI) tests for compound normal model in control and treatment populations. In the present paper, the Locally most powerful (LMP) tests are constructed for no contamination in normal mixture model through testing the parameter of mixture of distributions and the mixing proportion. The expected performance of LMP tests are compared using Efron's Statistical Curvature on the lines of Sen Gupta and Pal (1991). The Locally most powerful similar (LMPS) tests for the equality of control and treatment populations in the presence of nuisance parameters are also constructed. Further, the null and non-null distributions of the test statistics are derived and some power computations are made.</description><subject>Homogeneity</subject><subject>Model testing</subject><subject>Parameters</subject><subject>Population</subject><subject>Populations</subject><subject>Probabilistic models</subject><subject>Random variables</subject><subject>Sample size</subject><subject>Statistical tests</subject><subject>Statistics</subject><subject>Teaching methods</subject><issn>0932-5026</issn><issn>1613-9798</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kL1OwzAUhS0EEqXwAGwWzIHrOPHPiCooSJVYymwcxy6p0jjY7tCNh-AJeRIclZXh6i7fueeeg9A1gTsCwO8jAGVlATCNlAU7QTPCCC0kl-IUzUDSsqihZOfoIsYtABFCwAy9r21M3bDBH37nN3awXTpg77DxQwq-x3pocQpWp50dEh79uO916vwQ8c_XN-690T32Y-p2up-UEx5sRmyLuxj3Nl6iM6f7aK_-9hy9PT2uF8_F6nX5snhYFaasIRWibI0Gzqio65bXtjKyoYzXpXbcCZpzUSYIaZxkjXVEMEqYFY024IxgTUXn6PZ4dwz-M_smtfX7MGRLVXLBqwpExTN18y9FmZQV5SRD5AiZ4GMM1qkx5IDhoAioqW11bFvlr9TUtmL0F_rBc4o</recordid><startdate>20020401</startdate><enddate>20020401</enddate><creator>Raman, K. J.</creator><creator>Surairajan, T. M.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>PRINS</scope></search><sort><creationdate>20020401</creationdate><title>Testing homogeneity of control and treatment populations — local optimality and related issues</title><author>Raman, K. J. ; Surairajan, T. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c250t-82dca0763855d75e4c9b36752af7f8300236811bf96bef186316e8bac0fc86b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Homogeneity</topic><topic>Model testing</topic><topic>Parameters</topic><topic>Population</topic><topic>Populations</topic><topic>Probabilistic models</topic><topic>Random variables</topic><topic>Sample size</topic><topic>Statistical tests</topic><topic>Statistics</topic><topic>Teaching methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raman, K. J.</creatorcontrib><creatorcontrib>Surairajan, T. M.</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>ProQuest Central China</collection><jtitle>Statistical papers (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raman, K. J.</au><au>Surairajan, T. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Testing homogeneity of control and treatment populations — local optimality and related issues</atitle><jtitle>Statistical papers (Berlin, Germany)</jtitle><date>2002-04-01</date><risdate>2002</risdate><volume>43</volume><issue>2</issue><spage>257</spage><epage>271</epage><pages>257-271</pages><issn>0932-5026</issn><eissn>1613-9798</eissn><abstract>Durairajan and Raman (1996 a, b) studied the robustness of Locally most powerful invariant (LMPI) tests for compound normal model in control and treatment populations. In the present paper, the Locally most powerful (LMP) tests are constructed for no contamination in normal mixture model through testing the parameter of mixture of distributions and the mixing proportion. The expected performance of LMP tests are compared using Efron's Statistical Curvature on the lines of Sen Gupta and Pal (1991). The Locally most powerful similar (LMPS) tests for the equality of control and treatment populations in the presence of nuisance parameters are also constructed. Further, the null and non-null distributions of the test statistics are derived and some power computations are made.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00362-002-0099-6</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0932-5026
ispartof Statistical papers (Berlin, Germany), 2002-04, Vol.43 (2), p.257-271
issn 0932-5026
1613-9798
language eng
recordid cdi_proquest_journals_2787440847
source Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Homogeneity
Model testing
Parameters
Population
Populations
Probabilistic models
Random variables
Sample size
Statistical tests
Statistics
Teaching methods
title Testing homogeneity of control and treatment populations — local optimality and related issues
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A43%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Testing%20homogeneity%20of%20control%20and%20treatment%20populations%20%E2%80%94%20local%20optimality%20and%20related%20issues&rft.jtitle=Statistical%20papers%20(Berlin,%20Germany)&rft.au=Raman,%20K.%20J.&rft.date=2002-04-01&rft.volume=43&rft.issue=2&rft.spage=257&rft.epage=271&rft.pages=257-271&rft.issn=0932-5026&rft.eissn=1613-9798&rft_id=info:doi/10.1007/s00362-002-0099-6&rft_dat=%3Cproquest_cross%3E1664750881%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=236994371&rft_id=info:pmid/&rfr_iscdi=true