Adjacency Spectrum and Wiener Index of the Essential Ideal Graph of a Finite Commutative Ring \(\mathbb{Z}_{n}\)

Let \(R\) be a commutative ring with unity. The essential ideal graph \(\mathcal{E}_{R}\) of \(R\), is a graph with a vertex set consisting of all nonzero proper ideals of \textit{R} and two vertices \(I\) and \(K\) are adjacent if and only if \(I+ K\) is an essential ideal. In this paper, we study...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-08
Hauptverfasser: Jamsheena, P, Chithra, A V, Banerjee, Subarsha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Jamsheena, P
Chithra, A V
Banerjee, Subarsha
description Let \(R\) be a commutative ring with unity. The essential ideal graph \(\mathcal{E}_{R}\) of \(R\), is a graph with a vertex set consisting of all nonzero proper ideals of \textit{R} and two vertices \(I\) and \(K\) are adjacent if and only if \(I+ K\) is an essential ideal. In this paper, we study the adjacency spectrum of the essential ideal graph of the finite commutative ring \(\mathbb{Z}_{n}\), for \(n=\{p^{m}, p^{m_{1}}q^{m_{2}}\}\), where \(p,q\) are distinct primes, and \(m,m_{1}, m_2\in \mathbb N\). We show that \(0\) is an eigenvalue of the adjacency matrix of \(\mathcal{E}_{\mathbb{Z}_{n}}\) if and only if either \(n= p^2\) or \(n\) is not a product of distinct primes. We also determine all the eigenvalues of the adjacency matrix of \(\mathcal{E}_{\mathbb{Z}_{n}}\) whenever \(n\) is a product of three or four distinct primes. Moreover, we calculate the topological indices, namely the Wiener index and hyper-Wiener index of the essential ideal graph of \(\mathbb{Z}_{n}\) for different forms of \(n\)
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2787378192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2787378192</sourcerecordid><originalsourceid>FETCH-proquest_journals_27873781923</originalsourceid><addsrcrecordid>eNqNissKgkAUQIcgSMp_uNCmFoHNVNoyote2giAEmfSaI3m1mTGK6N8r6APanLM4p8EcLsRwEIw4bzHXmNzzPD7x-XgsHFbNklzGSPEDdhXGVtcFSErgoJBQw4YSvEOZgs0QFsYgWSUvsEnww5WWVfaNEpaKlEWYl0VRW2nVDWGr6AxhLyykzU6n5_EVPekV9jusmcqLQffnNusuF_v5elDp8lqjsVFe1po-KeJ-4As_GE65-O96AzIlSdc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787378192</pqid></control><display><type>article</type><title>Adjacency Spectrum and Wiener Index of the Essential Ideal Graph of a Finite Commutative Ring \(\mathbb{Z}_{n}\)</title><source>Free E- Journals</source><creator>Jamsheena, P ; Chithra, A V ; Banerjee, Subarsha</creator><creatorcontrib>Jamsheena, P ; Chithra, A V ; Banerjee, Subarsha</creatorcontrib><description>Let \(R\) be a commutative ring with unity. The essential ideal graph \(\mathcal{E}_{R}\) of \(R\), is a graph with a vertex set consisting of all nonzero proper ideals of \textit{R} and two vertices \(I\) and \(K\) are adjacent if and only if \(I+ K\) is an essential ideal. In this paper, we study the adjacency spectrum of the essential ideal graph of the finite commutative ring \(\mathbb{Z}_{n}\), for \(n=\{p^{m}, p^{m_{1}}q^{m_{2}}\}\), where \(p,q\) are distinct primes, and \(m,m_{1}, m_2\in \mathbb N\). We show that \(0\) is an eigenvalue of the adjacency matrix of \(\mathcal{E}_{\mathbb{Z}_{n}}\) if and only if either \(n= p^2\) or \(n\) is not a product of distinct primes. We also determine all the eigenvalues of the adjacency matrix of \(\mathcal{E}_{\mathbb{Z}_{n}}\) whenever \(n\) is a product of three or four distinct primes. Moreover, we calculate the topological indices, namely the Wiener index and hyper-Wiener index of the essential ideal graph of \(\mathbb{Z}_{n}\) for different forms of \(n\)</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Apexes ; Commutativity ; Rings (mathematics) ; Vertex sets</subject><ispartof>arXiv.org, 2023-08</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Jamsheena, P</creatorcontrib><creatorcontrib>Chithra, A V</creatorcontrib><creatorcontrib>Banerjee, Subarsha</creatorcontrib><title>Adjacency Spectrum and Wiener Index of the Essential Ideal Graph of a Finite Commutative Ring \(\mathbb{Z}_{n}\)</title><title>arXiv.org</title><description>Let \(R\) be a commutative ring with unity. The essential ideal graph \(\mathcal{E}_{R}\) of \(R\), is a graph with a vertex set consisting of all nonzero proper ideals of \textit{R} and two vertices \(I\) and \(K\) are adjacent if and only if \(I+ K\) is an essential ideal. In this paper, we study the adjacency spectrum of the essential ideal graph of the finite commutative ring \(\mathbb{Z}_{n}\), for \(n=\{p^{m}, p^{m_{1}}q^{m_{2}}\}\), where \(p,q\) are distinct primes, and \(m,m_{1}, m_2\in \mathbb N\). We show that \(0\) is an eigenvalue of the adjacency matrix of \(\mathcal{E}_{\mathbb{Z}_{n}}\) if and only if either \(n= p^2\) or \(n\) is not a product of distinct primes. We also determine all the eigenvalues of the adjacency matrix of \(\mathcal{E}_{\mathbb{Z}_{n}}\) whenever \(n\) is a product of three or four distinct primes. Moreover, we calculate the topological indices, namely the Wiener index and hyper-Wiener index of the essential ideal graph of \(\mathbb{Z}_{n}\) for different forms of \(n\)</description><subject>Apexes</subject><subject>Commutativity</subject><subject>Rings (mathematics)</subject><subject>Vertex sets</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNissKgkAUQIcgSMp_uNCmFoHNVNoyote2giAEmfSaI3m1mTGK6N8r6APanLM4p8EcLsRwEIw4bzHXmNzzPD7x-XgsHFbNklzGSPEDdhXGVtcFSErgoJBQw4YSvEOZgs0QFsYgWSUvsEnww5WWVfaNEpaKlEWYl0VRW2nVDWGr6AxhLyykzU6n5_EVPekV9jusmcqLQffnNusuF_v5elDp8lqjsVFe1po-KeJ-4As_GE65-O96AzIlSdc</recordid><startdate>20230817</startdate><enddate>20230817</enddate><creator>Jamsheena, P</creator><creator>Chithra, A V</creator><creator>Banerjee, Subarsha</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230817</creationdate><title>Adjacency Spectrum and Wiener Index of the Essential Ideal Graph of a Finite Commutative Ring \(\mathbb{Z}_{n}\)</title><author>Jamsheena, P ; Chithra, A V ; Banerjee, Subarsha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27873781923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Apexes</topic><topic>Commutativity</topic><topic>Rings (mathematics)</topic><topic>Vertex sets</topic><toplevel>online_resources</toplevel><creatorcontrib>Jamsheena, P</creatorcontrib><creatorcontrib>Chithra, A V</creatorcontrib><creatorcontrib>Banerjee, Subarsha</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jamsheena, P</au><au>Chithra, A V</au><au>Banerjee, Subarsha</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Adjacency Spectrum and Wiener Index of the Essential Ideal Graph of a Finite Commutative Ring \(\mathbb{Z}_{n}\)</atitle><jtitle>arXiv.org</jtitle><date>2023-08-17</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Let \(R\) be a commutative ring with unity. The essential ideal graph \(\mathcal{E}_{R}\) of \(R\), is a graph with a vertex set consisting of all nonzero proper ideals of \textit{R} and two vertices \(I\) and \(K\) are adjacent if and only if \(I+ K\) is an essential ideal. In this paper, we study the adjacency spectrum of the essential ideal graph of the finite commutative ring \(\mathbb{Z}_{n}\), for \(n=\{p^{m}, p^{m_{1}}q^{m_{2}}\}\), where \(p,q\) are distinct primes, and \(m,m_{1}, m_2\in \mathbb N\). We show that \(0\) is an eigenvalue of the adjacency matrix of \(\mathcal{E}_{\mathbb{Z}_{n}}\) if and only if either \(n= p^2\) or \(n\) is not a product of distinct primes. We also determine all the eigenvalues of the adjacency matrix of \(\mathcal{E}_{\mathbb{Z}_{n}}\) whenever \(n\) is a product of three or four distinct primes. Moreover, we calculate the topological indices, namely the Wiener index and hyper-Wiener index of the essential ideal graph of \(\mathbb{Z}_{n}\) for different forms of \(n\)</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2787378192
source Free E- Journals
subjects Apexes
Commutativity
Rings (mathematics)
Vertex sets
title Adjacency Spectrum and Wiener Index of the Essential Ideal Graph of a Finite Commutative Ring \(\mathbb{Z}_{n}\)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A43%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Adjacency%20Spectrum%20and%20Wiener%20Index%20of%20the%20Essential%20Ideal%20Graph%20of%20a%20Finite%20Commutative%20Ring%20%5C(%5Cmathbb%7BZ%7D_%7Bn%7D%5C)&rft.jtitle=arXiv.org&rft.au=Jamsheena,%20P&rft.date=2023-08-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2787378192%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2787378192&rft_id=info:pmid/&rfr_iscdi=true