Highly Personalized Text Embedding for Image Manipulation by Stable Diffusion

Diffusion models have shown superior performance in image generation and manipulation, but the inherent stochasticity presents challenges in preserving and manipulating image content and identity. While previous approaches like DreamBooth and Textual Inversion have proposed model or latent represent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-04
Hauptverfasser: Han, Inhwa, Serin Yang, Kwon, Taesung, Ye, Jong Chul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Han, Inhwa
Serin Yang
Kwon, Taesung
Ye, Jong Chul
description Diffusion models have shown superior performance in image generation and manipulation, but the inherent stochasticity presents challenges in preserving and manipulating image content and identity. While previous approaches like DreamBooth and Textual Inversion have proposed model or latent representation personalization to maintain the content, their reliance on multiple reference images and complex training limits their practicality. In this paper, we present a simple yet highly effective approach to personalization using highly personalized (HiPer) text embedding by decomposing the CLIP embedding space for personalization and content manipulation. Our method does not require model fine-tuning or identifiers, yet still enables manipulation of background, texture, and motion with just a single image and target text. Through experiments on diverse target texts, we demonstrate that our approach produces highly personalized and complex semantic image edits across a wide range of tasks. We believe that the novel understanding of the text embedding space presented in this work has the potential to inspire further research across various tasks.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2787375464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2787375464</sourcerecordid><originalsourceid>FETCH-proquest_journals_27873754643</originalsourceid><addsrcrecordid>eNqNjUELgjAYQEcQJOV_-KCzYJs672XYQQjyLhM3m8zN3AbZr89DP6DTg8eDt0EBJuQU5QnGOxRaO8RxjDOK05QEqCpl_1QL3PlsjWZKfngHNX87KMaWd53UPQgzw21kPYeKaTl5xZw0GtoFHo61isNFCuHt6g5oK5iyPPxxj47Xoj6X0TSbl-fWNYPx87qxDaY5JTRNsoT8V30Bgt89zQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787375464</pqid></control><display><type>article</type><title>Highly Personalized Text Embedding for Image Manipulation by Stable Diffusion</title><source>Free E- Journals</source><creator>Han, Inhwa ; Serin Yang ; Kwon, Taesung ; Ye, Jong Chul</creator><creatorcontrib>Han, Inhwa ; Serin Yang ; Kwon, Taesung ; Ye, Jong Chul</creatorcontrib><description>Diffusion models have shown superior performance in image generation and manipulation, but the inherent stochasticity presents challenges in preserving and manipulating image content and identity. While previous approaches like DreamBooth and Textual Inversion have proposed model or latent representation personalization to maintain the content, their reliance on multiple reference images and complex training limits their practicality. In this paper, we present a simple yet highly effective approach to personalization using highly personalized (HiPer) text embedding by decomposing the CLIP embedding space for personalization and content manipulation. Our method does not require model fine-tuning or identifiers, yet still enables manipulation of background, texture, and motion with just a single image and target text. Through experiments on diverse target texts, we demonstrate that our approach produces highly personalized and complex semantic image edits across a wide range of tasks. We believe that the novel understanding of the text embedding space presented in this work has the potential to inspire further research across various tasks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Customization ; Diffusion ; Embedding ; Image manipulation ; Image processing ; Task complexity</subject><ispartof>arXiv.org, 2023-04</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Han, Inhwa</creatorcontrib><creatorcontrib>Serin Yang</creatorcontrib><creatorcontrib>Kwon, Taesung</creatorcontrib><creatorcontrib>Ye, Jong Chul</creatorcontrib><title>Highly Personalized Text Embedding for Image Manipulation by Stable Diffusion</title><title>arXiv.org</title><description>Diffusion models have shown superior performance in image generation and manipulation, but the inherent stochasticity presents challenges in preserving and manipulating image content and identity. While previous approaches like DreamBooth and Textual Inversion have proposed model or latent representation personalization to maintain the content, their reliance on multiple reference images and complex training limits their practicality. In this paper, we present a simple yet highly effective approach to personalization using highly personalized (HiPer) text embedding by decomposing the CLIP embedding space for personalization and content manipulation. Our method does not require model fine-tuning or identifiers, yet still enables manipulation of background, texture, and motion with just a single image and target text. Through experiments on diverse target texts, we demonstrate that our approach produces highly personalized and complex semantic image edits across a wide range of tasks. We believe that the novel understanding of the text embedding space presented in this work has the potential to inspire further research across various tasks.</description><subject>Customization</subject><subject>Diffusion</subject><subject>Embedding</subject><subject>Image manipulation</subject><subject>Image processing</subject><subject>Task complexity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjUELgjAYQEcQJOV_-KCzYJs672XYQQjyLhM3m8zN3AbZr89DP6DTg8eDt0EBJuQU5QnGOxRaO8RxjDOK05QEqCpl_1QL3PlsjWZKfngHNX87KMaWd53UPQgzw21kPYeKaTl5xZw0GtoFHo61isNFCuHt6g5oK5iyPPxxj47Xoj6X0TSbl-fWNYPx87qxDaY5JTRNsoT8V30Bgt89zQ</recordid><startdate>20230419</startdate><enddate>20230419</enddate><creator>Han, Inhwa</creator><creator>Serin Yang</creator><creator>Kwon, Taesung</creator><creator>Ye, Jong Chul</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230419</creationdate><title>Highly Personalized Text Embedding for Image Manipulation by Stable Diffusion</title><author>Han, Inhwa ; Serin Yang ; Kwon, Taesung ; Ye, Jong Chul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27873754643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Customization</topic><topic>Diffusion</topic><topic>Embedding</topic><topic>Image manipulation</topic><topic>Image processing</topic><topic>Task complexity</topic><toplevel>online_resources</toplevel><creatorcontrib>Han, Inhwa</creatorcontrib><creatorcontrib>Serin Yang</creatorcontrib><creatorcontrib>Kwon, Taesung</creatorcontrib><creatorcontrib>Ye, Jong Chul</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Inhwa</au><au>Serin Yang</au><au>Kwon, Taesung</au><au>Ye, Jong Chul</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Highly Personalized Text Embedding for Image Manipulation by Stable Diffusion</atitle><jtitle>arXiv.org</jtitle><date>2023-04-19</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Diffusion models have shown superior performance in image generation and manipulation, but the inherent stochasticity presents challenges in preserving and manipulating image content and identity. While previous approaches like DreamBooth and Textual Inversion have proposed model or latent representation personalization to maintain the content, their reliance on multiple reference images and complex training limits their practicality. In this paper, we present a simple yet highly effective approach to personalization using highly personalized (HiPer) text embedding by decomposing the CLIP embedding space for personalization and content manipulation. Our method does not require model fine-tuning or identifiers, yet still enables manipulation of background, texture, and motion with just a single image and target text. Through experiments on diverse target texts, we demonstrate that our approach produces highly personalized and complex semantic image edits across a wide range of tasks. We believe that the novel understanding of the text embedding space presented in this work has the potential to inspire further research across various tasks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2787375464
source Free E- Journals
subjects Customization
Diffusion
Embedding
Image manipulation
Image processing
Task complexity
title Highly Personalized Text Embedding for Image Manipulation by Stable Diffusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A56%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Highly%20Personalized%20Text%20Embedding%20for%20Image%20Manipulation%20by%20Stable%20Diffusion&rft.jtitle=arXiv.org&rft.au=Han,%20Inhwa&rft.date=2023-04-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2787375464%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2787375464&rft_id=info:pmid/&rfr_iscdi=true