THE COMPUTATIONAL CONTENT OF INTRINSIC DENSITY

In a previous article, the author introduced the idea of intrinsic density—a restriction of asymptotic density to sets whose density is invariant under computable permutation. We prove that sets with well-defined intrinsic density (and particularly intrinsic density 0) exist only in Turing degrees t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of symbolic logic 2018-06, Vol.83 (2), p.817-828
1. Verfasser: ASTOR, ERIC P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In a previous article, the author introduced the idea of intrinsic density—a restriction of asymptotic density to sets whose density is invariant under computable permutation. We prove that sets with well-defined intrinsic density (and particularly intrinsic density 0) exist only in Turing degrees that are either high (a′ ≥T ∅″) or compute a diagonally noncomputable function. By contrast, a classic construction of an immune set in every noncomputable degree actually yields a set with intrinsic lower density 0 in every noncomputable degree. We also show that the former result holds in the sense of reverse mathematics, in that (over RCA₀) the existence of a dominating or diagonally noncomputable function is equivalent to the existence of a set with intrinsic density 0.
ISSN:0022-4812
1943-5886
DOI:10.1017/jsl.2018.4